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Abstract

Most interval-based solvers in the constraint logic programming framework
are based on either hull consistency or box consistency (or a variation of
these ones) to narrow domains of variables involved in continuous constraint
systems. This paper first presents HC4, an algorithm to enforce hull con-
sistency without decomposing complex constraints into primitives. Next,
an extended definition for box consistency is given and the resulting consis-
tency is shown to subsume hull consistency. Finally, BC4, a new algorithm
to efficiently enforce box consistency is described, that replaces BC3—the
“original” solely Newton-based algorithm to achieve box consistency—by an
algorithm based on HC4 and BC3 taking care of the number of occurrences of
each variable in a constraint. BC4 is then shown to significantly outperform
both HC3 (the original algorithm enforcing hull consistency by decomposing
constraints) and BC3.

1 Introduction

Finite representation of numbers precludes computers from exactly solving
continuous problems. Interval constraint solvers such as Prolog IV, Numer-
ica [14], and ILOG Solver [12], tackle this problem by relying on interval
arithmetic [10] to compute verified approximations of the solutions to con-
straint systems. Domains are associated to every variable occurring in the
problem, and solving a particular constraint then lies in eliminating some of
the values of these domains for which the constraint does not hold (incon-
sistency), using local consistency techniques and filtering [9].

In practice, enforced consistencies only approximate perfect local con-
sistency since some solutions may be unrepresentable with floating-point
numbers. Two worth mentioning approximate consistencies are hull con-
sistency [1] and box consistency [2]. Most interval constraint solvers are
based on either one of them. Enforcing hull consistency usually requires
decomposing the user’s constraints into so-called primitive constraints [4].



A well known drawback of this method is that the introduction of new vari-
ables induced by the decomposition hinders efficient domain tightening. On
the other hand, the original algorithm enforcing box consistency processes
constraints without decomposing them but is not at best with constraints
involving many variables with few occurrences. In [6], some of the authors
have presented DecLIC, a CLP language allowing the programmer to choose
the “best fitted” consistency to use for each constraint of a system; however,
deferring the choice of the consistency to the user spoils the declarativity of
the language.

In this paper, HC4, an algorithm to enforce hull consistency is first pre-
sented, that traverses repeatedly from top to bottom and conversely the
tree-structured representation of constraints; consequently, decomposition of
complex constraints into “primitives” is no longer needed. Next, a slightly
extended definition of box consistency is given, that no longer solely relies
on the natural interval extension of constraints and captures both the orig-
inal definition of box consistency [2] and the one by Collavizza et al. [5]. A
new algorithm (BC4) permitting to efficiently enforce box consistency is then
given. BC4 adapts the computation method to the number of occurrences
of each variable in a constraint: domain narrowing for variables occurring
only once in a constraint (which is one of the weaknesses of the “origi-
nal” Newton-based method to enforce box consistency) is obtained by using
HC4; variables occurring more than once are handled by searching “extreme
quasi-zeros” using an interval Newton method as described in the original
paper [2].

The rest of this paper is organized as follows: Section 2 presents the basics
related to interval constraint solving. Section 3 presents hull consistency
along with the usual scheme used to enforce it [4]; next, Algorithm HC4 to
enforce hull consistency without decomposing constraints is described and its
properties are pointed out. Section 4 first presents the extended definition for
box consistency; Algorithm BC4 to efficiently enforce box consistency is then
given. Section 5 comments results obtained on a prototype implementing
BC4. Last, Section 6 summarizes the paper’s contribution and points out
some directions for future research.

2 Preliminary notions

In order to model the change from continuous domains to discrete domains
induced by the shift from reals to machine numbers, Benhamou and Older [3]
have introduced the notion of approximate domain over the set of reals1 R:
an approximate domain A over R is a subset of the power set of R, P(R),
closed under intersection, containing R, and for which the inclusion is a
well-founded ordering. The approximation w.r.t. A of a real relation ρ,

1The original definition is more general but the one given here is sufficient for our
purpose.



written apxA(ρ), is then defined as the intersection of all the elements of A
containing ρ. This section focuses on two widely used approximation sets
over R, namely intervals and unions of intervals. The shift from reals to
intervals is first described; interval constraints are then introduced; finally,
the basics related to interval constraint solving are presented.

Let R be the set of reals compactified with the infinities {−∞, +∞} in
the obvious way, and F ⊂ R a finite subset of reals corresponding to binary
floating-point numbers in a given format [8]. Let F

∞ be F∪{−∞, +∞}. For
every g ∈ F

∞, let g+ be the smallest element in F
∞greater than g, and g− the

greatest element in F
∞smaller than g (with the conventions: (+∞)+ = +∞,

(−∞)− = −∞, (+∞)− = max(F), (−∞)+ = min(F)).
A closed/open floating-point interval is a connected set of reals whose

lowest upper bound and greatest lower bound are floating-point numbers.
The following notations are used as shorthands: [g ..h] ≡ {r ∈ R | g 6 r 6 h},
[g .. h) ≡ {r ∈ R | g 6 r < h}, etc. Let I◦ be the set of closed/open floating-
point intervals and I� the set of closed floating-point intervals. Let U◦ be
the set of unions of disjoint closed/open intervals, and U� the restriction
of U◦ to unions of disjoint closed intervals. Let I (resp. U) denote the set
of intervals (resp. unions of intervals) when the distinction between closed
and closed/open bounds is useless. For the sake of clarity and otherwise
explicitly stated, we will only consider hereafter (unions of) closed floating-
point intervals.

A Cartesian product of n intervals B = I1 × · · · × In is called a box ;
a domain D is either an interval I or a union U of disjoint intervals. A
non-empty interval I = [g .. h] is said to be canonical whenever h 6 g+. An
n-ary box B is canonical whenever intervals I1, . . . , In are canonical.

In the sequel, a real (resp. interval) constraint is an atomic formula built
from a real (resp. interval)-based structure and a set of real (resp. interval)-
valued variables. Given a real constraint c, let ρc denote the underlying
relation, Var(c) be the set of variables occurring in c, and Multiplicity(v, c)
the multiplicity (i.e. the number of occurrences) of the variable v in the
constraint c.

An interval extension of f : R
n → R is a mapping F : I

n → I such that
for all I1, . . . , In ∈ I : r1 ∈ I1, . . . , rn ∈ In ⇒ f(r1, . . . , rn) ∈ F (I1, . . . , In). An
interval extension of a relation ρ ⊆ R

n is a relation R ⊆ I
n such that for all

I1, . . . , In ∈ I : ∃r1 ∈ I1 . . .∃rn ∈ In s.t. (r1, . . . , rn) ∈ ρ⇒ (I1, . . . , In) ∈ R.
A real relation ρ may be conservatively approximated by the smallest

(w.r.t. set inclusion) union of disjoint boxes Union(ρ) = apxU(ρ) (resp. the
smallest box Hull(ρ) = apxI(ρ)) containing it. In the sequel, the following
approximations are used: Union◦(ρ) = apxU◦

(ρ), Union�(ρ) = apxU�
(ρ),

Hull◦(ρ) = apxI◦
(ρ), and Hull�(ρ) = apxI�

(ρ).
An n-ary interval operation � is called the natural interval extension of an

n-ary real operation ♦ if for all I1, . . . , In ∈ I : �(I1, . . . , In)= Hull({♦(x1, . . . ,

xn) | x1 ∈ I1, . . . , xn ∈ In}). The natural interval extension of a function
f : R

n → R is the interval function obtained from f by replacing each con-



stant r by Hull({r}), each variable by an interval variable, and each oper-
ation by its natural interval extension. Given an n-ary real constraint c,
let πk(ρc) = {rk ∈ R | ∃r1, . . . ,∃rn ∈ R s.t. (r1, . . . , rn) ∈ ρc} be the k-th
projection of ρc.

Given a real constraint c(x1, . . . , xn), a constraint solver aims at reduc-
ing the domains associated to variables x1, . . . , xn. This reduction process
is abstracted by the notion of constraint narrowing operators [1] (short-
ened thereafter to CNOs) which are complete, contracting, and monotone
functions taking as input a box and returning a box from which have been
discarded some of the elements which do not belong to ρc.

Due to space requirements, we only give proof sketches for the properties
stated hereinafter.

3 Hull consistency and related algorithms

Discarding all values of a box B for which a real constraint c does not hold
is not achievable in general. Section 3.1 presents a coarser consistency called
hull consistency [3] consisting in computing the smallest box that contains
ρc ∩ B. Section 3.2 describes HC4, a new algorithm tackling one of the
drawbacks of the original algorithm used to enforce hull consistency, that is,
the decomposition of the user’s constraints.

3.1 Hull consistency: the original scheme

The original definition of hull consistency is based on the approximate do-
main I� , though it might easily be defined on I◦:

Definition 3.1 (hull consistency [3]). A real constraint c is said hull con-
sistent w.r.t. a box B if and only if B = Hull�(ρc ∩B).

Due to round-off errors introduced by the use of floating-point numbers,
computing the interval enclosure of a real set S is a difficult task in itself.
Moreover, the precision of many arithmetic functions such as exp, cos. . . is
not guaranteed by the IEEE 754 standard [8]; consequently, their actual
precision is implementation dependent.

Algorithm HC32 [2, 4] partly overcomes this problem by enforcing hull
consistency over a decomposition cdec of simple—primitive—constraints rather
than considering the user constraint c. For example, the constraint c : x +
y ∗ z = t might be decomposed into cdec = {y ∗ z = α, x + α = t} with the
addition of the new variable α.

Formally, given a real n-ary constraint c and a box B, let ρc
(k)(B) be

2
HC3 is our own denomination for Algorithm Nar given in [2] and is justified by its very

close relation to AC3.



the k-th canonical extension of ρc w.r.t. B defined as follows [13]:

ρc
(k)(B) = {rk ∈ R | ∃r1 ∈ I1, . . . ,∃rk−1 ∈ Ik−1,

∃rk+1 ∈ Ik+1, . . . ,∃rn ∈ In s.t. (r1, . . . , rn) ∈ ρc}

A constraint c is called a primitive constraint on the approximate do-
main A if and only if one can exhibit n projection narrowing operators
N1

c , . . . , Nn
c , defined from An to A, such that: ∀D = D1 × · · · × Dn,∀k ∈

{1, . . . , n} : Nk
c (D) = apxA(ρc

(k)(D) ∩Dk).
The CNOs for primitive constraints are implemented using relational in-

terval arithmetic [4] (see an example below). The main advantage of such an
approach is that computation of hull consistency can be implemented very
efficiently for the set of simple constraints supported by the constraint pro-
gramming system. The drawbacks are that the introduction of new variables
due to the decomposition process drastically hinders domain tightening for
the variables the user is interested in. As pointed out in [2], this is particu-
larly true when the same variables appear more than once in the constraints
since each occurrence of a variable v is considered as a new variable v′ with
the same domain as v (dependency problem [10]).

Example 3.1 (A CNO for c : x + y = z). Enforcing hull consistency for the
constraint c : x+y = z and domains Ix, Iy, and Iz, is done by computing the
common fixed-point included in B = Ix× Iy × Iz of the following projection
operators: N1

c (B) = Ix ∩ (Iz ⊖ Iy), N2
c (B) = Iy ∩ (Iz ⊖ Ix), and N3

c (B) =
Iz ∩ (Ix⊕ Iy), where ⊖ and ⊕ are interval extensions of − and + defined as:
[a .. b]⊕ [c .. d] = [a + c .. b + d], and [a .. b]⊖ [c .. d] = [a− d .. b− c].

As pointed out by Van Emden [13], the projection operators N1
c ,N2

c ,N3
c ,

for a constraint of the form x♦ y = z may all exist even if the function ♦

has no inverse. For example, consider the case where ♦ stands for the mul-
tiplication over I� : N1

c computes the smallest union of intervals containing
the set {rx ∈ Ix | ∃ry ∈ Iy,∃rz ∈ Iz : rx × ry = rz}. Hence, it is defined even
when 0 ∈ Iy.

3.2 HC4: a new algorithm for hull consistency

Algorithm 1 presents the HC4 algorithm which takes as input a set of con-
straints and a box, and narrows the variables’ domains as much as possible.
Algorithm HC4 is very similar to Algorithm HC3 [1] except that input con-
straints c1, . . . , cm, are user’s constraints instead of decomposed constraints,
and that constraint narrowing operators associated to the constraints are
implemented by Algorithm HC4revise, whose description follows.

Algorithm HC4 shares the following properties with HC3: if the compu-
tation of HC4revise terminates for any constraint and any box, HC4 termi-
nates; the algorithm is complete: the output Cartesian product of domains
is a superset of the declarative semantics of the constraint system included



in the input box; the algorithm is confluent: the output is independent of
the reinvocation order of constraints.

Algorithm 1: HC4 algorithm

HC4(in {c1, . . . , cm} ; inout B = I1 × · · · × In)
begin

S ← {c1, . . . , cm}
while (S 6= ∅ and B 6= ∅) do

c ← choose one ci in S
B

′ ← HC4Revise(c,B,I�)
if (B′ 6= B) then

S ← S ∪ {cj | ∃xk ∈ Var(cj) ∧ I ′k 6= Ik}
B ← B

′

else % HC4revise not idempotent: next call on c may further narrow domains

S ← S \ {c}
endif

endwhile

end

These properties are proved in the same way as for HC3 (see [11]) once
HC4revise has been proved to be a constraint narrowing operator (Prop. 1).

HC4 improves the compilation time (generation of primitives is useless),
the solving time (no propagation needed between different primitive con-
straints for a given user’s constraint), and the memory size.

Algorithm 2: HC4revise algorithm

HC4revise( in c = r(t1, . . . , tp): real constraint; inout B: box;
in A: approximate domain)

begin

DA ← B

foreach i ∈ {1, . . . , p} do

ForwardEvaluation(ti,DA)
endforeach

BackwardPropagation(c,DA)
B← Hull�(DA)

end

Algorithm 2 presents HC4revise, the new algorithm implementing the
constraint narrowing operators used in HC4. Once more, note that HC4revise
considers the user’s constraints rather than primitives generated by decom-
position: A real constraint r(t1, . . . , tp) is represented by an attribute tree
where the root node contains the p-ary relation symbol r, and terms ti are
composed of nodes containing either a variable, a constant, or an operation
symbol. Moreover, each node but the root contains two interval attributes



t.fwd (synthesized) and t.bwd (inherited).
Given a real constraint and a box B, Algorithm HC4revise proceeds in

two consecutive stages:

Algorithm 3: Forward evaluation algorithm

ForwardEvaluation( inout t: attribute tree;
in DA = D1 × · · · ×Dn: Cartesian product of domains)

begin

case (t) of

♦(t1, . . . , tj): % a term

foreach i ∈ {1, . . . , j} do

ForwardEvaluation(ti,DA)
endforeach

t.fwd ← �(t1.fwd , . . . , tj .fwd)
a: % a constant

t.fwd ← apxA({a})
xk: % a variable

t.fwd ← Dk

endcase

end

1. The forward evaluation phase (see Alg. 3 and Fig. 1) is a traversal of
the terms from leaves to roots in order to evaluate in t.fwd the natural
interval extension of every sub-term t of the constraint;

2. The backward propagation phase (see Alg. 4 and Fig.2) is a traversal of
the tree-structured representation of the constraint from root to leaves
in order to evaluate in every t.bwd a projection narrowing operator
associated to the father of node t. More precisely, two kinds of node
are considered:

– given the root node r(t1, . . . , tp), attributes tk.bwd (k ∈ {1, . . . ,

p}) are computed by the k-th projection narrowing operator of
the constraint r(x1, . . . , xp), where x1 ∈ t1.fwd , . . . , xp ∈ tp.fwd ;

– given a term th+1 ≡ ♦(t1, . . . , th), attributes tk.bwd (k ∈ {1, . . . ,

h}) are computed by the k-th projection narrowing operator of
the constraint xh+1 = ♦(x1, . . . , xh), where xi ∈ ti.fwd for all i ∈
{1, . . . , h}, and xh+1 ∈ th+1.bwd ; intuitively, variables xi simulate
the new ones introduced by the decomposition process.

During the backward propagation phase, the algorithm may be prema-
turely ended by the computation of an empty interval in some t.bwd . The
constraint is then inconsistent w.r.t. the initial domains. If the computation
is successful, the domain of each variable xi in the constraint is intersected
with the one in xi.bwd .



Note: Backward propagation in a term is quite similar to automatic differentiation in

reverse mode [7] for computing the partial derivatives of a real function: after the forward

evaluation, the aim is either to evaluate the projection narrowing operators, or the partial

derivatives for each node containing an operation symbol. At the end of the traversal in

the tree, the domains are either intersected, or the derivatives summed.

Algorithm 4: Backward propagation algorithm

BackwardPropagation(inout t: attribute tree;
inout DA = D1 × · · · ×Dn: Cartesian product of domains)

begin

case (t) of

r(t1, . . . , tm): % The root node

c ←
(

r(x1, . . . , xm)
)

D
′
A
← (t1.fwd , . . . , tm.fwd)

foreach i ∈ {1, . . . ,m} do

ti.bwd ← πi(apxA(ρc ∩D
′
A

))
BackwardPropagation(ti,DA)

endforeach

♦(t1, . . . , th): % A term below the root

c ←
(

♦(x1, . . . , xh) = xh+1

)

D
′
A
← (t1.fwd , . . . , th.fwd , t.bwd)

foreach i ∈ {1, . . . , h} do

ti.bwd ← πi(apxA(ρc ∩D
′
A

))
BackwardPropagation(ti,DA)

endforeach

xj : % A variable

Dj ← Dj ∩ t.bwd % Domains intersected to take into

% account multiple occurrences of xj

endcase

end

Example 3.2. Figures 1 and 2 illustrate the computation of HC4revise over
the constraint 2x = z − y2, with domains Ix = [0 .. 20], Iy = [−10 .. 10], and
Iz = [0 .. 16].

Backward propagation at the root node computes [0 .. 40] ∩ [−100 .. 16]
(the intersection corresponds to the interpretation of the equality between
intervals) in (×(2, x)).bwd and (−(z, (̂y, 2))).bwd . Backward propagation at
the root node of term ×(2, x) computes in x.bwd the interval I included in
[0 ..20] (result of forward evaluation) which verifies 2× Ix = [0 ..16]. Finally,
the new domains (located in the grey nodes) are Ix = [0 .. 8], Iy = [−4 .. 4],
and Iz = [0 .. 16].

Proposition 1. Given an n-ary real constraint c, Algorithm HC4revise im-
plements a constraint narrowing operator for c.

Proof. Follows from the fact that HC4revise consists essentially in applying



some primitive CNOs at each node of a finite tree, and that a composition
of CNOs is also a CNO.

Let HC4revise⋆ be Algorithm HC4revise where, given a node t, the at-
tribute t.bwd is not eventually intersected with t.fwd .

=

[0 .. 16] × [0 .. 40 ]

2 [2 .. 2 ] [0 .. 8] x [0 .. 20 ]

[0 .. 16] − [−100 .. 16 ]

[0 .. 16] z [0 .. 16 ] [0 .. 16] ˆ [0 .. 100 ]

[−4 .. 4]
y

[−10 .. 10 ] 2
2

Figure 1: Annotated tree for the forward evaluation in the constraint 2x = z − y
2

=

[0 .. 16] × [0 .. 40 ]

2 [2 .. 2 ] [0 .. 8] x [0 .. 20 ]

[0 .. 16] − [−100 .. 16 ]

[0 .. 16] z [0 .. 16 ] [0 .. 16] ˆ [0 .. 100 ]

[−4 .. 4]
y

[−10 .. 10 ] 2
2

Figure 2: Annotated tree for the backward propagation in the constraint 2x = z − y
2

As stated by the following proposition, invoking Algorithm HC4 on a
set of constraints C and a box B is equivalent to the invocation of Algo-
rithm HC3 on B and the set of constraints generated by the decomposition
of the constraints in C into primitives:

Proposition 2. Given C a set of real constraints and B a box, the output

box of HC4(C,B) is equal to the one of HC3(Cdec,B), where Cdec =
⋃

c∈C

cdec.

Proof. The proof is done by noticing that HC4 and HC3 use the same nar-
rowing operators, and that the node attributes in HC4revise mimic the new
variables in HC3. The proof then follows since the application order of the
same constraint narrowing operators does not influence the fixed-point (con-
fluency property of propagation algorithms [11]).



4 Box consistency and related algorithms

Box consistency [2] has been introduced to avoid decomposing constraints,
thus tackling the dependency problem for variables with many occurrences.
Section 4.1 generalizes its definition and surveys the original method used
to enforce it. Some connections between Algorithm HC4revise and box con-
sistency are then stated. Finally, Section 4.2 presents a new algorithm to
enforce box consistency that avoids relying on the computationally expensive
Newton method when a cheaper method (straight evaluation) is available.

4.1 Box consistency

The original box consistency definition [2] is based on I� and on the natural
interval extension of constraints. It is generalized below by permitting the
use of other interval extensions, and by parameterizing it with two approx-
imate domains. This last modification allows us to take into account some
variations over the original definition such as the one given by Collavizza
et al. [5], where quasi-zeros are approximated by open intervals while the
output result is a closed one. The definition applies to (possible) different
interval extensions of the original real constraint to define the projections.

Definition 4.1 (BoxA1,A2,Γ consistency). GivenA1 and A2 two approximate
domains, let c be a real n-ary constraint, Γ = {C1, . . . , Cn} a set of n interval
extensions of c, k an integer in {1, . . . , n}, and D = D1×· · ·×Dn a Cartesian
product of domains. The constraint c is said box consistent w.r.t. D, a
variable xk of c, and Ck if and only if:

Dk = apxA1
(Dk ∩ {rk ∈ R |

Ck(D1, . . . , Dk−1, apxA2
({rk}), Dk+1, . . . , Dn)}) (1)

Moreover, c is said box consistent w.r.t. Γ and D iff Eq. (1) holds
for all k in {1, . . . , n}. A constraint set C is said box consistent w.r.t. a
Cartesian product of domains D whenever every n-ary constraint c ∈ C is
box consistent w.r.t. D and a set Γ of n interval extensions of c.

It is then worthwhile noting that boxI� ,I◦,{C,...,C} consistency—where C

is the natural interval extension of the considered constraint—corresponds
to the definition of box consistency as given by Collavizza et al. [5], while
boxI� ,I� ,{C,...,C} consistency is equivalent to the original definition [2].

For the sake of clarity, boxI� ,I� ,{C,...,C} consistency is henceforth short-
ened to “boxo consistency.”

Boxo consistency is enforced by Algorithm BC3revise over a n-ary con-
straint c as follows: CNOs N1, . . . , Nn (implementing typically an interval
Newton method [14]) are associated to the univariate interval constraints
CB

1 , . . . , CB
n obtained from the interval extension C of c by replacing all the

variables but one by their domains. Each Nk reduces the domain of one



variable by computing the leftmost and rightmost canonical intervals such
that CB

k holds (leftmost and rightmost quasi-zeros).
As said in [2], boxo consistency computation is far more effective than

hull consistency computation when dealing with complex constraints involv-
ing the same variables many times, since the global processing of these con-
straints avoids losing some useful information. Nevertheless, finding the left-
most and rightmost quasi-zeros is computationally expensive. Moreover, it
must be done for every variable occurring in the constraint. Therefore, boxo

consistency is generally not the solution of choice when a complex constraint
involves many different variables.

Given a variable xk occurring once in a constraint c, let c′ be an equivalent
constraint where xk is expressed in term of the other variables of c, and Cxk

the natural interval extension of c′. A property of Algorithm HC4revise can
now be stated:

Proposition 3. Let c be an n-ary constraint, C its natural interval exten-
sion, xk a variable occurring exactly once in c, Γ = {C, . . . , Cxk

, . . . , C}
a set of n interval extensions, B a n-ary box, and B

′ the output box of
HC4revise⋆(c,B, U�). Then, c is box I� ,I� ,Γ consistent w.r.t. B

′, xk and
Cxk

.

Proof. One may prove by induction on the tree-structured representation of
c that, given B

′ the result of HC4revise⋆(c,B, U�), the interval I ′k is equal
to Hull�(ρc

(k)(B) ∩ Ik). The results then follows from Definition 4.1.

The exact characterization of the result provided by the execution of
HC4revise is still an open problem but we have the following completeness
and accuracy result w.r.t. variables with single occurrences:

Proposition 4. Given an n-ary constraint c, a box B, and xk a variable
occurring once, the following inclusions hold:

Hull�(ρc ∩B) ⊆ HC4revise(c,B, U�) ⊆ HC4revise⋆(c,B, U�)

Proof. Inclusion Hull�(ρc ∩B) ⊆ HC4revise(c,B, U�) comes from HC4revise
being a CNO (Prop. 1), while the other inclusion is due to HC4revise being
HC4revise⋆ where the attribute nodes are intersected with some domains.

4.2 BC4: a new algorithm for box consistency

Let BC3 be the algorithm similar to HC3 and HC4, where the CNOs used
by the revise function implement BC3revise.

On the one hand, Algorithm HC3 is efficient over real constraints whose
variables have only one occurrence since then, the decomposition process
does not amplify the dependency problem and the interval tightening meth-
ods are cheap. On the other hand, Algorithm BC3 is in general more efficient



than HC3 since it is able to cancel the dependency problem over one vari-
able with many occurrences in one constraint while the decomposition in
HC3 increases it.

The previous remarks have led us to define BC4, a new propagation
algorithm presented by Alg. 5. Let BC4⋆ be Algorithm BC4 where HC4revise
is replaced by HC4revise⋆.

Algorithm 5: Algorithm BC4

BC4(in C: set of constraints; inout B: box)
begin

repeat

B
′ ← B

do

NotFinished ← false

foreach c ∈ C do

V1
c← {x ∈ Var(c) | Multiplicity(x, c) = 1}

B
′′← B

HC4revise(c,B,U�)
NotFinished ← (B 6= ∅ ∧ ((∃Ik 6= I ′′k ∧ xk ∈ V

1
c )

∨ NotFinished))
endforeach

while (NotFinished)
if (B 6= ∅) then

BC3(C+p ,B)
endif

until (B′ = B or B = ∅)
end

The set C+
p is the set of projection constraints (univariate constraints obtained by replacing all

occurrences of every variable but one in any constraint by the corresponding domains) generated
from C, where the variable occurs more than once.

Proposition 5. Let C be a constraint set, C1
p = {Cx | ∃c ∈ C : x ∈ Var(c) ∧

Multiplicity(x, c) = 1} the set of univariate interval constraints whose vari-
able has only one occurrence, C+

p , the set of univariate interval constraints
whose variable has more than one occurrence, B a box, and B

′ the out-
put box of BC4⋆(C,B). Then, BC4⋆ enjoys the same properties than HC4,
namely: it is a confluent, complete and terminating algorithm. Moreover, C
is box

I� ,I� ,C1
p∪C

+
p

consistent w.r.t. B
′.

Proof. Confluency, completeness and termination are proved in the same
way as for Algorithm HC4. As for box consistency, it suffices to note that
HC4revise⋆ enforces boxI� ,I� ,C1

p
consistency for variables occurring only once,

while BC3 enforces box
I� ,I� ,C+

p
consistency for variables occurring more than

once. Consequently, computing the common fixed point of both leads to the
result.



As a consequence of Prop. 4, the result of applying Algorithm BC4 may
be proved complete and included in the result of BC4⋆.

5 Experimental results

The propagation algorithms HC3, BC3 and BC4 have been implemented
and tested on various examples from numerical analysis and CLP(Intervals)
benchmarks [14, 6].

Table 5 presents the computational results obtained on a Sun Ultra-
Sparc 2/166MHz for algorithms BC3 and BC4 and on an AMD K6/166MHz
for HC3, then scaled to the first machine. Propagation algorithms are em-
bedded in a more general bisection algorithm which splits the domains if the
desired precision (width of domains) of 10−8 is not reached. Neither improve-
ment factor nor weakening of box consistency (boxϕ consistency [6]) where
used. Computation times exceeding one hour are replaced by a question
mark.

Table 1: Experimental results

Benchmark BC4 (s.) BC3 (s.) BC3/BC4 HC3 (s.)† HC3/BC4

Cosnard 10 0.15 2.45 15 4.10 27

Cosnard 20 0.95 16.50 17 172.75 182

Cosnard 40 2.90 123.30 42 ? ր

Cosnard 80 13.70 916.95 67 ? ր

Broyden 10 2.40 2.35 1 ? ր

Broyden 160 86.65 86.55 1 ? ր

Kearfott 10 0.50 1.40 3 0.75 1.5

Kearfott 11 0.70 6.45 9 0.70 1

i4 32.65 160.80 5 ? ր

bifurcation 2.85 31.10 11 3.55 1.2

DC circuit 0.40 12.15 30 0.65 1.6

pentagon 1.10 12.95 12 0.70 0.6

pentagon all 44.60 2 340.00 52 124.20 2.8
†Time on an AMD K6/166 scaled to a SUN Solaris 2/166.

“Cosnard x” is the Moré-Cosnard problem obtained by discretizing a
nonlinear integral equation which is composed of x equations over x vari-
ables, every variable appearing in every constraint; “Broyden x” is the
Broyden-Banded problem with x variables which all have multiple occur-
rences in the constraints; “Kearfott 10”, “Kearfott 11” and “bifurcation” are
respectively some problems from chemistry, kinematics and numerical bifur-
cation, where the numbers of multiple and simple occurrences of variables
in the constraints are approximatively equal; “i4” is a standard benchmark
from the interval community; “DC circuit” models an electrical circuit with
linear constraints; “pentagon all” describes the coordinates of a set of regu-
lar pentagons; “pentagon” is a restriction of “pentagon all” to one pentagon;



the variables in benchmarks “i4”, “DC circuit”, “pentagon” and “pentagon
all” have simple occurrences.

Results analysis: The well-known behaviours of HC3 and BC3 are con-
firmed. HC3 is not able to compute all the solutions of the Broyden-Banded
problem since the decomposition of constraints amplifies the dependency
problem. HC3 is slow for the Moré-Cosnard problem since the decompo-
sition of complex constraints generates numerous primitive constraints and
intermediate variables. Consequently, the domains propagation takes a long
time. On the same problems, BC3 is far more efficient. HC3 outperforms BC3
on the other problems whose constraints have single occurrences of variables.

The use of HC4revise before BC3 in BC4 greatly accelerates the computa-
tions (see Column BC3/BC4). The worst case corresponds to the Broyden-
Banded problem composed of multiple occurrences of variables. BC3 does
not contract any domain but the overhead is insignificant due to the low cost
of HC4revise. The good results for the last benchmarks are not surprising and
come from the superiority of BC4 (and HC3) over BC3. The Moré-Cosnard
problem is efficiently handled since HC4 is able to contract the domains of
variables having multiple occurrences and then HC4 is always used instead of
the interval Newton method (in BC3) which computes a sequence of intervals
at a greater cost.

Last, BC4 outperforms HC3 on most of the benchmarks (see column
HC3/BC4). On the one hand this comes from the superiority of BC3 over
HC3 (for example on the Moré-Cosnard and Broyden-Banded problems).
On the other hand, HC4 accelerates HC3 for the last benchmarks though the
difference is small. A pathological case is “pentagon” which illustrates that
a different propagation strategy may lead to different computation times.
However the result “pentagon all” is in favour of BC4 though the benchmark
is similar.

6 Conclusion

The contribution of this paper is twofold: first, an algorithm to enforce
hull consistency without decomposing constraints into primitives has been
presented; second, an extended definition for box consistency has been given:
the original definition [2] only relies on a closed interval approximate domain
and on natural interval extension, while the new one is parameterized by
two approximate domains and permits defining box consistency for each
variable of a constraint according to a different interval extension. As a
result, the new definition captures several slightly different definitions of box
consistency present in the literature and allows us to devise a new algorithm
to efficiently enforce box consistency that may replace both the traditional
algorithm used to enforce the original box consistency and the traditional
algorithm to enforce hull consistency.

A variation of hull-consistency, 3B consistency, has been proved to be



more precise than box consistency [5], though computationally more expen-
sive to enforce since it relies on decomposition of constraints into primitives.
A promising direction for future research is to reuse Algorithm HC4 to device
a new scheme for enforcing 3B consistency that might compete with BC4 in
both speed and accuracy.
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