
On Considering an Interval Constraint Solving Algorithm
as a Free-Steering Nonlinear Gauss-Seidel Procedure

Frédéric Goualard
Laboratoire d’Informatique de Nantes-Atlantique, FRE CNRS 2729

2, rue de la Houssinière. B.P. 92208
F-44322 NANTES CEDEX 03

frederic.goualard@lina.univ-nantes.fr

ABSTRACT
We show that a classical interval constraint propagation al-
gorithm enforcing box consistency may be interpreted as a
free-steering nonlinear Gauss-Seidel procedure. This sug-
gests that the choice of a transversal in the incidence ma-
trix associated with the problem to solve is paramount to
the efficiency of the algorithm. We present experimental
evidences that it is indeed so, and we suggest an heuris-
tics to compute good transversals. The improved interval
constraint algorithm is compared with a classical one and
with standard methods such as Hansen-Sengupta on some
well-known benchmarks.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Constraints; G.1.0 [Numerical Analysis]:
General—Interval arithmetic

General Terms
Algorithms, Reliability

Keywords
nonlinear system, branch-and-prune method, constraint

1. INTRODUCTION
We consider the problem of finding all the solutions of

systems of the form:

f1(x1, . . . , xn) = 0
. . .

fn(x1, . . . , xn) = 0

(1)

where f1, . . . , fn are nonlinear real functions1.

1In the rest of the paper, we also allow for systems where
some variables do not occur in all fis.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05 March 13-17, 2005, Santa Fe, New Mexico, USA
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

A successful approach to this problem combines a branch-
and-prune algorithm (See Table 1) with interval extensions
[11] of classical numerical methods such as the precondi-
tioned Newton-Gauss-Seidel [12] (aka Hansen-Sengupta [6])
method.

However, with large systems and large domains, algo-
rithms that rely on matrix computation and linear approxi-
mations such as the Hansen-Sengupta method become com-
putationally expensive and inefficient. As an alternative,
Herbort and Ratz proposed a componentwise Newton me-
thod [7] that considers each equation fi(x1, . . . , xn) = 0 sep-
arately, using a unidimensional Newton iteration on a unary
projection of fi onto one of the variables x1, . . . , xn.

Herbort and Ratz’s method avoids the manipulation of
matrices. On the other hand, it may create a large search
tree whenever the projections of the fis have a lot of zeroes
that are not solutions of the system.

To overcome this, some interval constraint methods do not
attempt to directly isolate the zeroes of the projections of
each fi. Rather, they try for each projection to shrink the
domain of the variable projected onto, so as to “tightly”
enclose all the zeroes of the corresponding unidimensional
function; The meaning of “tightly” is precisely defined by
the local consistency notion considered [10]. Experimental
evidences show that these methods usually outperform both
Hansen-Sengupta and Herbort-Ratz methods.

In this paper, we analyze algorithms enforcing a particu-
lar local consistency called box consistency [2], and we show
that they correspond to a free-steering nonlinear Gauss-
Seidel procedure [12]. A consequence is that the choice of
the variable xj to project the function fi onto is paramount
to the efficiency of the overall process. We then propose an
heuristics to make that choice and show experimentally that
it allows for a speed-up of several orders of magnitude for
some large constraint systems.

2. SOLVING NONLINEAR SYSTEMS
Given a constraint system C of the form (1), let ρ ⊆ R

n

be the solution set of C. Let us assume the availability
of a prune function that takes as input the vector F of fis
occurring in C and a Cartesian product of n interval domains
(box) D for the variables, and that returns as output a box
D′ verifying the two properties D′ ⊆ D and ρ∩D′ = ρ∩D.
Then, Alg. BaP in Table 1 computes a set sol of boxes whose
largest dimension has a width smaller than some user-given
real parameter ε (see the paragraph below for the notations

1434

2005 ACM Symposium on Applied Computing

used). Each box in sol is included into the box Din, and the
union of the boxes in sol contains ρ ∩ Din.

Notations: Given a finite set F of floating-point numbers,
let I be the set of intervals with bounds in F. For any a ∈ F,
let a+ (resp. a−) be the smallest element of F strictly greater
than a (resp. greatest element of F strictly smaller than a).
Let P(I) be the power set of I. Given an interval I = [a, b],
we denote I = a and I = b; let w(I) =l (b−a) l be the width
of I (where lγl is the floating-point number closest to the
real γ, with the IEEE 754 rule for ties); the width of a box
is the width of its largest projection. Let dist(I1, I2) be the
Hausdorff distance between I1 and I2. Given a real set R,
let 2 R be the smallest (w.r.t. inclusion) interval containing
R.

1 BaP
`

in F = (f1, . . . , fn) : R
n → R

n; in Din ∈ I
n;

2 out sol ∈P(In)
´

3 begin
4 boxset← {Din} ; sol← ∅

5 while boxset 6= ∅ do
6 D← extract box(boxset)
7 D← prune(F, D)
8 if w(D) 6 ε then
9 if D 6= ∅ then

10 sol← sol ∪ {D}
11 endif
12 else
13 boxset← boxset ∪ split(D)
14 endif
15 endwhile
16 end

Table 1: Branch-and-Prune algorithm

For the special case where all the fis are linear, the prune

function may be implemented by the Gauss-Seidel method.
For a nonlinear system, a classical choice is Hansen-Sengupta
[6], which iteratively solves with the Gauss-Seidel method
the preconditioned linear system arising from the lineariza-
tion of System (1) induced by a multidimensional Newton
step.

The principle at the root of the Gauss-Seidel method may
also be used for nonlinear constraints leading to nonlinear
Gauss-Seidel [12] (NLGS): if it is possible to normalize each
constraint fi(x1, . . . , xn) = 0 into xi = gi(x1, . . . , xi−1, xi+1,
. . . , xn), NLGS is similar to the linear version (and indeed
falls back to the Gauss-Seidel method for linear fis).

2 Oth-
erwise, given a box D = I1×· · ·×In and f1, . . . , fn interval
extensions of f1, . . . , fn, one considers the n unary projection
constraints:

f1
(1)(x1, I2, . . . , In) = 0

. . .

fn
(n)(I1, . . . , In−1, xn) = 0

(2)

and uses any unidimensional root-finding method to tighten
the domain of each variable xi in turn. Using the unidimen-
sional Newton method leads to the Gauss-Seidel-Newton
method [12], whose extension to intervals is the Herbort-
Ratz method [7]. Let HR be the elementary step performed
by one unidimensional Newton step applied to a projec-
tion fi

(j), where i and j may be different. As soon as

2An interesting point to raise here is that, using relational
interval arithmetic, it is always possible to implicitly nor-
malize a constraint [3].

D is moderately large, it is very likely that each projec-
tion constraint will have many “solutions” that are not so-
lutions of the original real system, and whose discarding
slows down the computation. Another problem lies in that
the Newton method will usually fail to narrow down the
domain of some xi if there is more than one solution to
the corresponding projection constraint for the current box
D, thereby demanding more splittings in the branch-and-
prune algorithm. Achieving the right balance between the
amount of work required by the prune method and the num-
ber of splittings performed overall is the key to the maxi-
mum efficiency of BaP. In this very situation, experimen-
tal evidences show that trying harder to narrow down the
domain of xi pays off. A way to do it is to ensure that

the canonical intervals [Ii , Ii
+] and [Ii

−

, Ii] are solutions of

fi
(i)(I1, . . . , Ii−1, xi, Ii+1, . . . , In) = 0. Let BC be an algo-

rithm that ensures this property (called box consistency [2]
of xi w.r.t. the constraint fi = 0 and D) for a projection

fi
(j), where i may be different from j. A simple method to

implement it uses a dichotomic process to isolate the left-
most and rightmost solutions included in D of each projec-
tion constraint (Refer to the original paper [2] for a more
detailed description).

2 3 4

−1

Original domain Domain after a HR contraction

Domain after a BC contraction

f(x) = (x − 1.5)(x − 2)(x − 3)

Figure 1: Comparison of HR and BC

Example 1. Consider the constraint f(x) = (x−1.5)(x−
2)(x − 3) = 0 and the domain I = [1, 4] for x (See Fig. 1).
The HR method leaves I unchanged because the derivative of
f over the initial domain contains 0. Alg. BC narrows down
I to I ′ = [1.5, 3], which is the smallest interval included in
I that contains all the solutions to the interval constraint
f (x) = 0.

An implementation of NLGS loops over f1
(1), . . . , fn

(n) in
order (primary iteration), applying either HR or BC on each
projection (secondary iteration) until reaching some fixed-
point. Free-steering nonlinear Gauss-Seidel [12] allows to
consider the n projection constraints in an arbitrary order,
which may even change from one sweep of the primary it-
eration to the next. Yet another variant makes of each sec-
ondary iteration a complete NLGS step [12, p. 224]. It is
then possible to consider some projection constraints more
often than others.

In the linear case, it is well-known that the efficiency of
the Gauss-Seidel method may depend heavily on the order-
ing of the fis, that is the choice of a transversal in the co-
efficients matrix. The same holds true for nonlinear Gauss-
Seidel methods and the choice of the pairs (fi, xj) to con-
sider for generating the n projection constraints appears a
key factor in their efficiency [7, 1].

The Generalized Gauss-Seidel algorithm we introduce in
Table 2 is a framework for defining any free-steering nonlin-
ear Gauss-Seidel-like method. The select function chooses

1435

the pairs (fi, vj) to consider in the current primary itera-
tion, while the tighten function implements the secondary
iteration narrowing down the domain of vj w.r.t. the pro-

jection constraint f
(j)
i . The parameter ∆ allows the user

to decide whether the last primary iteration was effective
or not. If not, we prefer reverting to the splitting process,
which is less expensive than floundering with GGS.

1 GGS
`

in F = (f1, . . . , fn) : R
n → R

n;
2 inout D = I1 × · · · × In ∈ I

n)
3 begin
4 modified← true; D′ ← [−∞, +∞]n

5 while w(D) > ε and modified do
6 Lfv← select({f1, . . . , fn}, {x1, . . . , xn}, D′ , D)
7 D′ ←D

8 foreach (fi, vj) in Lfv do
9 Ij ← Ij ∩ tighten(fi, vj , D)

10 endfor
11 modified← (dist(D, D′) > ∆)
12 endwhile
13 end

Table 2: Generalized Gauss-Seidel algorithm

In the following, the name of an instantiation of GGS is
made of the names of the select and tighten functions chosen.

Let GSSN (resp. GSSN2) be a select function that always
creates the same list of n projections (resp. all the—at most
n2—projections) in the same order. For linear fis, a GSSN

function always returning the list (f1, x1), (f2, x2), . . . , (fn,
xn), and a tighten function applying the interval Gauss-
Seidel inner step, GGS falls back to the usual Gauss-Seidel
method. The Gauss-Seidel-Newton method may be derived
accordingly.

For constraint systems such that some variables do not
occur in all the constraints, it becomes interesting to use
a select function that puts into Lfv only the pairs (fi, vj)

that are such that f
(j)
i contains at least one input variable

whose domain has been modified during the previous pri-
mary iteration (otherwise, it is useless to reconsider this
projection constraint). Let AC3N (resp. AC3N2) be such a
select function that considers n projections (resp. all the—at
most n2—projections).

If the tighten function uses a BC algorithm, and we choose
an AC3N2 select function, we obtain the classical BC3 algo-
rithm (AC3N2.BC in our parlance) used to enforce box con-
sistency [2] on nonlinear constraint systems, short of the
precise order for the reinvocation of projection constraints.

The incidence matrix for a constraint system is a 0/1 ma-
trix: the entry on Line i and Column j contains a 1 if xj

occurs in fi and 0 otherwise. In the following, we impose
on GSSN and AC3N functions the limitations that each con-
straint shall be used only once, and that each variable shall
be used only once as an output variable (This corresponds
in effect to the choosing of a transversal in the incidence
matrix).

3. ANALYZING BC3-LIKE ALGORITHMS
For the record, all times presented in the rest of the paper

have been measured on a computer whose score with the
double precision Whetstone test [4] (Nov. 1997 version) is
475 MWIPS. The code used to implement all the techniques
described here was written entirely in C++ by the author.
All the boxes computed have a width smaller than ε = 10−8.

Figures 2 and 3 present computational times obtained
when solving Barton’s problem [1] with either GSSN2.BC

(that is, the BC3 algorithm except that the projections are
considered in a fixed order) or GSSN.BC:

f1(X) = x1 + x4 − 10 = 0 f4(X) = x4 − 3x1 + 6 = 0
f2(X) = x2

2x3x4 − x5 − 6 = 0 f5(X) = x1x3 − x5 + 6 = 0
f3(X) = x1x1.7

2 (x4 − 5)− 8 = 0

for X = (x1, . . . , x5) and the initial box D = [−100, 100]5.

Figure 2 corresponds to the solving of Barton’s problem
with a nonlinear Gauss-Seidel algorithm whose secondary
iteration enforces box consistency using both a dichotomic
process and interval Newton steps. The order of the projec-
tion constraints is fixed at the start and remains the same
for all the sweeps of the primary iteration. This figure syn-
thesizes the influence of both the choice of a transversal, and
of the order of consideration of the projections: one gray col-
umn encloses the computation times for all the transversals
that contain the pair written under the abscissa. The posi-
tion of a column of dots inside a gray column stands for the
position of the corresponding projection among the others
in the primary iteration. We have solved Barton’s prob-
lem using all the possible transversals and all the possible
positions of each projection in the primary iteration.

Transversals

lo
g(

T
im

e
in

 s
ec

on
ds

)

F1x1 F1x4 F2x3 F2x5 F3x2 F4x4 F4x1 F5x3 F5x5

−4

−2

0

2

4

Figure 2: Barton with GSSN.BC

A first observation is that the position of each of the n
projections in the primary iteration is not very relevant: for
each of the nine gray columns, the results dispersion is al-
most the same among the five columns of dots corresponding
to the five possible positions. On the other hand, the choice
of the transversal greatly influences the computation time.
In particular, we see that using (f1, x1) instead of (f1, x4)
leads to much larger computation times whatever the choice
of the other projections in the transversal. The same holds
for (f4, x4) and (f4, x1). Actually, retaining (f1, x1) imposes
the choice of (f4, x4) and accordingly for (f1, x4), if our se-
lection of projections is to be a transversal.

Transversals

lo
g(

T
im

e
in

 s
ec

on
ds

)

F1 F2 F3 F4 F5

−3.5

−3.0

−2.5

−2.0

Figure 3: Barton with GSSN2.BC

Picture 3 reports the times obtained when solving Bar-
ton’s problem with GSSN2.BC: we consider all possible pro-
jections (here, there are nine) in a fixed order; the secondary

1436

iteration enforces box consistency over each of them. The
five leftmost columns correspond to solving the problem
with all the projections from f1 considered first (very first
column), in “second position” (that is after all the projec-
tions of a single other constraint), and so on. The same
holds for the other groups of five columns.

Once again, the respective positions of the projections in
the primary iteration do not appear significant. In addition,
since all the projections are used during the solving, we never
encounter instances whose solving time are much larger than
others. For the case of Barton’s problem, all times are not
too far from the best possible time reported in the upper
picture. By using all possible transversals, a BC3-like algo-
rithm avoids making a bad choice. On the other hand, it
prevents us from achieving the best performances since there
are more projections to consider, which is time consuming.

4. CHOOSING A GOOD TRANSVERSAL
For large dense problems (that is, problems with dense

incidence matrices), BC3-like algorithms can no longer be
used satisfactorily: in the densest case, the number of pro-
jections grows as the square of the number of equations,
leading to an overwhelming number of projections to con-
sider. Very often, the additional cost their handling incurs
largely counterbalances the potential benefit of avoiding the
selection of a bad transversal.

To some extent, this situation has already been acknowl-
edged by interval constraint researchers: in a more general
settings, Lhomme et al. [9] noticed that during the propa-
gation of domain variations (i.e., primary iteration), many
applications of narrowing operators (that is, secondary iter-
ations in our parlance) are unnecessary. They suggest a
scheme to identify these useless operators by looking for
static and dynamic dependencies; they then allocate the
bulk of the computing power to but a subset of all the op-
erators. Granvilliers [5] uses both a static selection of the
operators relying on a simple heuristics based on the num-
ber of occurrences of each variable in the constraints, and a
dynamic selection during which he considers all the possible
projection constraints and retains only those that tighten
variable domains the most.

In the remaining of this paper, we first present the results
obtained with an heuristics that helps us select statically
and/or dynamically a transversal (that is, the propagation
algorithm will deal with only n operators). We then suggest
another heuristics based on the structure of the constraints.

For the real linear case, it is well known that a sufficient
condition for the Gauss-Seidel method to converge is to have
a strictly diagonal dominant coefficient matrix. Hansen and
Smith have shown in 1967 that a similar condition exists for
the interval Gauss-Seidel method and they suggest to use a
preconditioner whose effect is that a variable does not occur
prominently in several constraints.

Our guess is that such a situation is beneficial to non-
linear Gauss-Seidel as well. We then propose the following
method to achieve some kind of “diagonal dominance” in a
nonlinear system. Given the current box D, choose for each
constraint fi(x1, . . . , xn) = 0, the variable on which fi is the
most dependent in the domain D. This information may be
obtained by computing the gradient of fi on D: select the

variable xj with maximal mignitude3, that is, choose xj such
that:

mig
∂fi

∂xj

(D) = max
k=1...n

mig
∂fi

∂xk

(D)

If no mignitude is non-null, then choose instead the variable
xl with maximal magnitude4.

If different from zero, the largest mignitude corresponds to
the variable for which fi varies the most on D. Otherwise,
we choose the variable with largest magnitude because it is
the one for which fi potentially varies the most on D. The
use of this heuristics to obtain a transversal for the whole
system (1) requires the computation of its Jacobian J . It
may be done after each modification of the current box,
each time we enter in the prune function, or even only once
at the beginning of the solving with the initial box. The
first possibility is clearly too expensive; the second is also
expensive (of the order of the computational burden required
by the Hansen-Sengupta method) but allows to optimize the
computation of box consistency: if we find a variable xj for
fi for which the mignitude of the partial derivative is strictly

positive, we may replace BC by HR when considering f
(j)
i

since there is then at most one solution in the domain of xj .
We thus divide the amount of work performed by two.

Given a box D, the computation of a transversal may be
performed as follows: create the n × n real matrix W with
entries defined as follows:

Wij =

8

>

>

<

>

>

:

mig
∂fi

∂xj

(D) + max
k,l

mag
∂fk

∂xl

(D), if mig
∂fi

∂xj

(D) 6= 0

mag
∂fi

∂xj

(D), otherwise

Finding a transversal according to the heuristics above then
corresponds to the computation of a perfect weighted match-
ing in the bipartite graph associated to the matrix W , which
is an O(n2 log n) process. In W , we add to a non-null migni-
tude the largest magnitude overall to ensure that a migni-
tude is always preferred over a magnitude.

To avoid the cost of the matching computation, one may
lift the requirement of selecting only n projections as long
as each variable and each function occurs in at least one
pair selected. For our tests, we computed the transversal
only once at the beginning of the solving. As experimental
evidences show, this choice, though far from perfect, is often
sufficient to ensure a significant speed-up.

Fig. 4 and 5 present the results obtained on two standard
benchmarks: the Broyden-banded problem and the Moré-
Cosnard problem5. They both are nonlinear and scalable at
will. The matrices in both graphics are graphical depictions
of their incidence matrices: a black square at position (i, j)
means that xj occurs in fi; a white square is used otherwise.
As its name suggests, the Broyden-banded is not a dense
problem; on the other hand, Moré-Cosnard is a fully dense
problem.

AC3N.BC uses our heuristics to compute a transversal
once so that the propagation algorithm works with only n
projections. AC3N2.BC works with all the possible projec-
tions, as expected.

3mig I = min{|a| | a ∈ I}
4mag I = max{|a| | a ∈ I}
5See, e.g., http://www.mat.univie.ac.at/~neum/glopt/
coconut/benchmark/Library3.html

1437

Number of variables

tim
e

in
 s

ec
on

ds

5 50 150 300 400 500 600 700 800 900 1000

0

20

40

60

80

100

120

140

AC3N2.BC
AC3N.BC

Incidence matrix

Figure 4: Solving Broyden-banded

For Broyden-banded, the speed-up gained with the heuris-
tics is significant, though not tremendous, for large instances.
This is in accordance with the low density of the incidence
matrix of the problem. We have also tested the AC3N.HR

algorithm. However it was not efficient enough to allow us
solving large instances (n > 50). It seems that the partial
derivatives used in the Newton steps contain 0 most of the
time; the HR method is then unable to tighten the domains
of the variables and therefore, the AC3N.HR algorithm does
not perform much better than a simple dichotomic process.

Number of variables

lo
g(

tim
e

in
 s

ec
on

ds
)

10 20 30 40 50 60 70 80 90 100 150 200

−2

0

2

4

6

8

AC3N2.BC
AC3N.BC
AC3N.HR

Incidence matrix

Figure 5: Solving Moré-Cosnard

For Moré-Cosnard, the speed-up obtained with AC3N.BC

and our heuristics is impressive (hence the logarithmic scale
for the time in Fig. 5). Once again, this is in accordance with
the high density of the problem: AC3N2.BC has to handle
n2 projections instead of n well-chosen projections only for
AC3N.BC. Contrary to the Broyden-banded problem, the
AC3N.HR algorithm fares well here, though its efficiency is
still a step behind the one of AC3N.BC.

5. CONCLUSION
We have tested the mignitude/magnitude-based heuristics

on a dozen of standard benchmarks with various structures
(polynomial or not) and various densities. The speed-ups
obtained range from “real” to “impressive” even when com-
puting the Jacobian only once. We suspect however that for
very difficult problems it may be necessary to recompute it
more than once during the solving process. As a side note,

it is worthwhile contrasting our use of the Jacobian during
the narrowing process with the “smear value” method in-
troduced by Kearfott [8] that uses it to direct the search
process.

Herbort and Ratz [7] suggest some other heuristics to
select projection constraints for the Gauss-Seidel-Newton
method. They do not restrict themselves to transversals
and allow one variable to be tightened by several projec-
tions. According to our tests of their method implemented
in CXSC 2.0, the results we obtain with our method are
much better, though it is unclear what is contributed by the
surrounding framework (interval library, propagation algo-
rithm, . . .) and what by the heuristics proper.

In a different context, Sotiropoulos et al. [13] propose
some heuristics to compute good transversals for polyno-
mial systems based on the structure of the constraints. To
assess their methods in our framework and to devise more
advanced structure-based heuristics are our goals for future
researches. In particular, symbolic manipulation of a system
to achieve a “structural diagonal dominance” where only one
variable is “preeminent” per constraint (e.g., with a much
higher degree) seems a promising approach.

6. REFERENCES
[1] P. I. Barton. The equation oriented strategy for

process flowsheeting. Dept. of Chemical Eng. MIT,
Cambridge, MA, Mar. 2000.

[2] F. Benhamou, D. McAllester, and P. Van Hentenryck.
CLP(Intervals) revisited. In Proc. of ILPS ’94, pages
124–138, Ithaca, NY, Nov. 1994. The MIT Press.

[3] M. Ceberio and L. Granvilliers. Solving nonlinear
systems by constraint inversion and interval
arithmetic. In Proc. AISC ’2000, volume 1930 of
LNAI, pages 127–141. Springer, 2000.

[4] H. J. Curnow and B. A. Wichmann. A synthetic
benchmark. Comput. J., 19(1):43–49, 1976.

[5] L. Granvilliers. On the combination of interval
constraint solvers. Rel. Comp., 7(6):467–483, 2001.

[6] E. R. Hansen and S. Sengupta. Bounding solutions of
systems of equations using interval analysis. BIT,
21:203–211, 1981.

[7] S. Herbort and D. Ratz. Improving the efficiency of a
nonlinear-system-solver using a componentwise
newton method. RR 2/1997, Inst. für Angewandte
Mathematik, Karslruhe, 1997.

[8] R. B. Kearfott and M. N. III. INTBIS, a portable
interval newton/bisection package (algorithm 681).
ACM TOMS, 16:152–157, 1990.

[9] O. Lhomme, A. Gotlieb, and M. Rueher. Dynamic
optimization of interval narrowing algorithms. J. of
Logic Prog., 37(1–3):165–183, 1998.

[10] A. K. Mackworth. Consistency in networks of
relations. AI, 1(8):99–118, 1977.

[11] R. E. Moore. Interval Analysis. Prentice-Hall, 1966.

[12] J. M. Ortega and W. C. Rheinboldt. Iterative
solutions of nonlinear equations in several variables.
Academic Press Inc., 1970.

[13] D. G. Sotiropoulos, J. A. Nikas, and T. N. Grapsa.
Improving the efficiency of a polynomial system solver
via a reordering technique. In Proc. 4th GRACM
Congress on Computational Mechanics, 2002.

1438

