Corrigendum to the paper
 "Drawing random floating-point numbers
 from an interval",

ACM TOMACS, 32:3, pp. 1-24

Frédéric Goualard
November 8, 2023

In Table IV of Section 5, the four functions γ sectionCC(), γ sectionCO(), γ sectionOC(), and γ section00() present the same two flaws:

- If ceilint $(\mathrm{a}, \mathrm{b}, \mathrm{g})$ returns an integer hi that is strictly greater than 2^{p} - with p the size of the significand of a and b - the random value k from the interval $[0, \mathrm{hi}]$ or $[0, \mathrm{hi}-1]$ may itself be greater than 2^{p}. Therefore, it may not be representable without rounding as a floating-point number when performing the multiplications $(\mathrm{k}-1) * \mathrm{~g}, \mathrm{k} * \mathrm{~g}$ or $(\mathrm{k}+1) * \mathrm{~g}$. The consequence is that some floating-point numbers in $[a, b]$ cannot be drawn even though they should;
- For some rare intervals $[a, b]$ where both bounds are very large in magnitude with opposite signs, the values ($\mathrm{k}-1$) $* \mathrm{~g}$, $\mathrm{k} * \mathrm{~g}$, or ($\mathrm{k}+1$) $* \mathrm{~g}$ may overflow.

Fortunately, there is a very simple fix to both problems: split k into two positive integers k 1 and k 2 such that:

$$
\mathrm{k}=2^{v} \times \mathrm{k} 1+\mathrm{k} 2
$$

and compute, e.g., $\mathrm{b}-\mathrm{k} * \mathrm{~g}$ as $2^{\wedge} \mathrm{v} *\left(\mathrm{~b} * 2^{\wedge}-\mathrm{v}-\mathrm{k} 1 * \mathrm{~g}\right)-\mathrm{k} 2 * \mathrm{~g}$.
For the double precision format, we may choose $v=2$: since $g \in\left[2^{-1074}, 2^{971}\right]$ and it can easily be proven that $\mathrm{hi}=$ ceilint $(\mathrm{a}, \mathrm{b}, \mathrm{g})$ is always strictly smaller than 2^{55}, we have $\mathrm{k} 1<2^{53}$ and $\mathrm{k} 2<2^{53}$, and therefore $\mathrm{k} * \mathrm{~g}<2^{1024}$, which precludes any overflow.

The following Julia code is a corrected version of the one in Table IV of the original article. It also presents an implementation of the function splitint64() to split a positive integer into two parts.
"""
Given a 64 bits positive integer, return two values ‘vhi` and ‘vlo` such that:

```
        v = 4*vhi + vlo
"""
function splitint64(v)
    vhi = Float64(v>>2)
    vlo = Float64(v & 0x3)
        return (vhi,vlo)
end
"""
    \gammasectionCC(a,b)
```

Draw a float from an interval [a,b]
uniformly at random.
"""
function γ sectionCC(a, b)
$\mathrm{g}=\gamma(\mathrm{a}, \mathrm{b})$
hi = ceilint ($\mathrm{a}, \mathrm{b}, \mathrm{g}$)
$\mathrm{k}=$ rand(DiscreteUniform(0,hi))
(k1,k2) = splitint64(k)
if abs(a) <= abs(b)
return (k == hi)
? a
$: 4 *(\mathrm{~b} / 4-\mathrm{k} 1 * \mathrm{~g})-\mathrm{k} 2 * \mathrm{~g}$
else
return (k == hi)
? b
$: 4 *(\mathrm{a} / 4+\mathrm{k} 1 * \mathrm{~g})+\mathrm{k} 2 * \mathrm{~g}$
end
end
" " "
γ sectionCO (a,b)
Draw a float from an interval [a,b)
uniformly at random.
"""
function γ sectionCO (a, b)
$\mathrm{g}=\gamma(\mathrm{a}, \mathrm{b})$
hi = ceilint($\mathrm{a}, \mathrm{b}, \mathrm{g}$)
$\mathrm{k}=\operatorname{rand}($ DiscreteUniform(1,hi))
(k1,k2) = splitint64(k)
if abs(a) <= abs(b)
return (k == hi)
? a
: $4 *(\mathrm{~b} / 4-\mathrm{k} 1 * \mathrm{~g})-\mathrm{k} 2 * \mathrm{~g}$
else
return $4 *(\mathrm{a} / 4+\mathrm{k} 1 * \mathrm{~g})+(\mathrm{k} 2-1) * \mathrm{~g}$
end
end
" " "
$\gamma \operatorname{sectionOC}(a, b)$

Draw a float from an interval (a,b] uniformly at random.
"""
function γ sectionOC (a, b)
$g=\gamma(a, b)$
hi $=\operatorname{ceilint}(a, b, g)$
$\mathrm{k}=\operatorname{rand}($ DiscreteUniform(0,hi-1))
(k1,k2) = splitint64(k)
if $\mathrm{abs}(\mathrm{a})<=\mathrm{abs}(\mathrm{b})$
return $4 *(\mathrm{~b} / 4-\mathrm{k} 1 * g)-\mathrm{k} 2 * \mathrm{~g}$
else
return (k == hi-1)
? b
$: 4 *(\mathrm{a} / 4+\mathrm{k} 1 * \mathrm{~g})+(\mathrm{k} 2+1) * \mathrm{~g}$
end
end
" " "
$\gamma \operatorname{section00}(\mathrm{a}, \mathrm{b})$

Draw a float from an interval (a,b)
uniformly at random.
" " "
function γ section00 (a, b)

$$
\mathrm{g}=\gamma(\mathrm{a}, \mathrm{~b})
$$

hi $=\operatorname{ceilint}(\mathrm{a}, \mathrm{b}, \mathrm{g})$
$\mathrm{k}=$ rand(DiscreteUniform(1, hi-1))
(k1,k2) = splitint64(k)
if $\mathrm{abs}(\mathrm{a})<=\mathrm{abs}(\mathrm{b})$
return $4 *(\mathrm{~b} / 4-\mathrm{k} 1 * g)-\mathrm{k} 2 * g$
else
return $4 *(a / 4+\mathrm{k} 1 * g)+\mathrm{k} 2 * \mathrm{~g}$
end
end

