
Box Consistency through Weak Box Consistency

Laurent Granvilliers, Fr´edéric Goualard, Fr´edéric Benhamou
IRIN, Université de Nantes

B.P. 92208, F-44322 Nantes Cedex 3, France
fLaurent.Granvilliers,Frederic.Goualard,Frederic.Benhamoug@irin.univ-nantes.fr

Abstract

Interval constraint solvers use local consistencies—
among which one worth mentioning is box consistency—
for computing verified solutions of real constraint systems.
Though among the most efficient ones, the algorithm for
enforcing box consistency suffers from the use of time-
consuming operators. This paper first introduces box' con-
sistency, a weakening of box consistency; this new notion
then allows us to devise an adaptive algorithm that com-
putes box consistency by enforcing box' consistency, de-
creasing the' parameter as variables’ domains get tight-
ened, then achieving eventually box0 consistency, which is
equivalent to box consistency. A new propagation algorithm
is also given, that intensifies the use of the most contracting
pruning functions based on box' consistency. The result-
ing algorithm is finally shown to outperform the original
scheme for enforcing box consistency on a set of standard
benchmarks.

1. Introduction

The use of interval analysis [12] for solving continu-
ous constraint systems in the framework of logic program-
ming is a step to reconcile logic and numerical computa-
tions. The starting point is the seminal work of Cleary [3]
who introduced a relational form of interval arithmetic.
Originating from these ideas, various extensions have been
proposed and implemented in CLP(Intervals) systems like
CLP(BNR), Interlog, Newton, PrologIV andDecLIC for solv-
ing interval constraints[4, 7, 9, 2].

The constraint solving algorithm is basically an iteration
of two steps: first, an interval-based pruning operator as-
sociated to each constraint of the system to be solved dis-
cards from the variables’ domains some of the values that
are inconsistent with the constraint (local consistencysuch
as arc consistency [11]); the domain modifications are then
propagated to the other constraints for reinvocation of their
pruning operator. When quiescence is reached, abisection

stage occurs—splitting of the domains—to separate solu-
tions and obtain tighter domains that could have been ob-
tained by constraint propagation alone.

The finite precision of machine arithmetic prevents from
achieving arc consistency over continuous domains. Hence,
coarser consistencies are used in practice, among which one
may cite box consistency [2]. An algorithm enforcing box
consistency was first implemented inNewton [13] by a di-
chotomic search combined with an interval Newton method.
The consistency is enforced over a constraint system by
propagation (BC3 algorithm) that combines the local ap-
proximations from every constraint. Two recent works have
discussed the convergence of such algorithms. On the one
hand, the authors [5] have proposed to weaken the precision
of the local approximations computed byBC3 with the con-
sequence that the final domains may not be box consistent.
On the other hand, Lhommeet al. [10] have defined a new
propagation algorithm for 2B consistency which essentially
intensifies the application of the most contracting pruning
functions.

This paper is an attempt to combine both above-
mentioned techniques for implementing box consistency.
More precisely, a weakening of box consistency calledbox'
consistencyis introduced. Both notions are very close;
hence, the implementation of an algorithm for box' con-
sistency is straightforward. Box' consistency then allows
us to devise a new adaptive propagation algorithmBC' for
achieving box consistency that iterates two steps: a selec-
tion of the most contracting pruning functions enforcing
box' consistency; and their application in sequence with-
out any propagation. The key point is that the algorithm
increases the precision of the computed consistency by de-
creasing the' parameter the more variables’ domains are
tightened (that is,' is an estimate of the distance to the
global fixed-point). Hence, the computed consistency is
eventually box consistency. Preliminary results from a pro-
totype show a significant speed-up with respect toBC3.

The rest of the paper is organized as follows. Section 2
introduces the materials from constraints and interval anal-
ysis. Section 3 presents the notion of box consistency and

the framework of constraint propagation. Section 4 defines
the notion of box' consistency, its implementation and the
new propagation strategy. Section 5 analyses the experi-
mental results. Finally, Section 6 discusses some directions
for further developments.

2. Preliminaries

Let R be the set of real numbers andF � R a set of
binary floating-point numbers [8] (shortened thereafter to
floats). Given a real numberr, let brc (resp. dre) be the
greatest float smaller or equal (resp. lowest float greater or
equal) thanr. Given a floatg, let g� be the greatest float
smaller thang, andg+ the lowest float greater thang.

2.1. Interval Analysis

An intervalI is a set of real numbersfr 2 R j I 6 r 6
Ig written [I; I] where boundsI andI are elements ofF.
Let I be the set of all intervals. A Cartesian productI of
intervalsI1�� � �� In is called abox. Thereafter, boldfaced
letters denote either a vector or a Cartesian product, depend-
ing on the context. A nonempty interval[a; b] is saidcanon-
ical wheneverb 6 a+. GivenI = [a; b] andr = (a+ b)=2,
thecenterof I is brc, the interval midpointof I is [brc; dre]
and thewidthof I is db� ae. Thewidth of the boxI is the
maximum of the widths componentwise. Thedistancebe-
tweenI = [a; b] andJ = [c; d] is dd jc� aj e+ d jb� dj ee.
The distancebetweenI 2 I

n andJ 2 I
n is the sum of

the distances componentwise. LetHull(�) be the smallest
interval containing the relation� � R.

Definition 1 (Interval extensions). An inclusion mono-
tonic functionF : In ! I is an interval extensionof
f : Rn ! R if for everyI 2 I

n, r 2 I) f(r) 2 F (I).
A relation
 � I

n is an interval extensionof � � R
n if for

everyI 2 I
n, I \ � 6= ?) I 2
.

A quasi-zeroof an interval functionF : I ! I is a
canonical intervalI verifying 0 2 F (I). Given an interval
functionF (X1; : : : ; Xn), an integerk 2 f1; : : : ; ng, and an
interval vectorI 2 I

n, F [k; I] corresponds to the interval
functionXk 7! F (I1; : : : ; Ik�1; Xk; Ik+1; : : : ; In).

The univariate interval Newton method [12] is an adap-
tation based on interval analysis of the Newton root finding
method for real functions derived from the mean value the-
orem (see [6] for a more complete presentation).

Theorem 1 (Mean value).Let x; x0 be real numbers and
f : R ! R a function with continuous first order derivative.
Then, there exists� 2 R betweenx andx0 such thatf(x)�
f(x0) = f 0(�)(x � x0).

If x0 is a zero off , Theorem 1 leads tox0 = x �
f(x)=f 0(�). Let F (resp.F 0) be an interval extension of

f (resp.f 0) andI be an interval containing bothx andx0
such thatx 2 midpoint(I) and0 62 F 0(I). Since� is in
I , it follows f 0(�) 2 F 0(I), and thenx0 2 N(I), where
N(I) = midpoint(I)� F (midpoint(I))=F 0(I). By hypoth-
esis,x0 is in I ; consequentlyx0 2 I \ N(I). One may
then devise an algorithm for finding a zero off contained
in an intervalI0 by applying the stepI i+1:= I i \ N(I i)
from I0. Iterations converge sinceI is finite and each step
is contracting. LetN�(F; F 0; I0) be the fixed-point of this
iterating process.

2.2. Constraints

A constraint is a first-order atomic formula over
the structure of realshR;O; f6;=;>gi—where O is
a set of operation symbols—and the set of variables
fx1; : : : ; xng. Given a constraintc(xk1; : : : ; xkl), let
�(c) = f(a1; : : : ; an) 2 R

n j 9 (ak1; : : : ; akl) 2 cg be the
relation obtained by an operation of cylindrification. Acon-
straint systemis a coupleC = hC; Ii made of a set of con-
straintsC = fc1; : : : ; cmg and an interval vectorI whereIk
is the domain of possible values forxk. Thesolution setof
C is I \ �(c1) \ � � � \ �(cm).

3. Box consistency

Box consistency [2] is an approximation of arc con-
sistency over intervals that is efficiently implemented by
means of interval Newton methods inNewton [13] andNu-
merica [14]. It is defined in terms of quasi-zeros of some
interval extensions of real relations.

Definition 2 (Box consistency).A relation
 � I
n is box

consistentin somek 2 f1; : : : ; ng andI 2 I
n if

Ik = Hull(fa 2 Ik j
(I1; : : : ; Ik�1;Hull(fag); Ik+1; : : : ; In) 2
g)

As described in [1], solving a constraint system consists
in iteratively applying some contracting functions called
narrowing operators. Anarrowing operatorfor a relation
� � R

n is a contracting and monotonic functionnar : In !
I
n such thatI \ � � nar(I) for everyI 2 I

n (correctness).
Furthermore, a narrowing operator is said to beunivariate
of rankk if I andnar(I) only differ in thek-th component
for everyI 2 I

n. A narrowing operatornar for the relation
�(c) of a constraintc(xk1; : : : ; xkl) is saidto depend onthe
integersk1; : : : ; kl. BC-narrowing operatorsare narrowing
operators devoted to the computation of box consistency.

Definition 3 (BC-narrowing operator). Let � � R
n be a

relation and
 � I
n an interval extension of�. A BC-

narrowing operator for
 is a univariate narrowing oper-
ator nar of rank k 2 f1; : : : ; ng for � that associates to

Table 1. Box consistency algorithm BC3.

BC3 (N ; N : sets of BC-narrowing operators;I : In) : In

% N: set of operators to re-apply
begin

if N = ? or I = ? then return I

else
nar := one element ofN % selection
k := rank ofnar
J := nar (I) % contraction
if Jk 6= Ik then % propagation
M := N [fnar0 2 N j nar0 depends onkg
% nar can be removed fromM if it is idempotent

elseM := N n fnarg % nar(I) = I

endif
return BC3 (N ;M;J)

endif
end

everyI 2 I
n the greatest sub-boxJ of I such that
 is

box consistent ink andJ . The vectornar(I) is denoted
BC (k;
; I).

Note thatBC (k;
; I) is independent from the actual
implementation of BC-narrowing operators. It character-
izes the approximation computed by any narrowing opera-
tor that implements box consistency with respect to
 and
k. This is related to the notion ofmaximal box consistency
in the literature.

Solving a constraint systemhC; Ii consists in two con-
secutive stages. Acompilation stagecreates a set of BC-
narrowing operatorsN as follows: for every constraint
c 2 C, for every interval extension1
 of �(c) and for every
variablexk 2 c, the setN contains a BC-narrowing oper-
ator of rankk for
. The propagation algorithmBC3 de-
scribed in Table 1 combines the approximations computed
by all the narrowing operators fromN until none of them is
able to further tighten the domains. The final vector of do-
mains is the greatest common fixed-point of the narrowing
operators included in the initial domains.

The main feature ofBC3 is to maintain the setN nN of
narrowing operators for which the current domains are nec-
essarily a fixed-point. This process is easily implemented
since the relation “depends on” is static and can be cre-
ated at compile-time. However the updates of structures
after each application of a narrowing operator are time-
consuming (see [10]).

1For example the natural interval extension or the Taylor interval ex-
tension [14].

4. Box' consistency

Box consistency effectiveness comes from its ability to
locally cancel the so-calleddependency problemof interval
arithmetic [12]. However, its actual implementation suffers
from some drawbacks: first, applying a BC-narrowing op-
erator is computationally expensive and leads to the unnec-
essary computation of a local fixed-point per operator; sec-
ond, BC-narrowing operators do not ensure in practice the
same amount of domain tightening. We address these prob-
lems by first definingbox' consistency, a weakening of box
consistency. Box' consistency then allows us to devise a
new propagation algorithm, calledBC', for computing box
consistency.

4.1. Definitions

Box consistency ensures a property on canonical inter-
vals at bounds of the variables’ domains. In contrast, box'

consistency imposes a weaker condition by replacing the
canonical intervals by intervals of width'. Intuitively this
corresponds to the replacement in Definition 2 of the hull of
a (best possible approximation) by an interval included in
Ik whose width is smaller than'.

Definition 4 (box' consistency).Let' 2 R
+ be a positive

real number. A relation
 � I
n is box' consistent in some

k 2 f1; : : : ; ng andI 2 I
n if

Ik = Hull(fa 2 Ik j (I1; : : : ; Ik�1;
Ik \ Hull(fa; a+ 'g); Ik+1; : : : ; In) 2
g)

Note that box consistency is equivalent to box' consis-
tency with' = 0 since thena+' = a andIk\Hull(fag) =
Hull(fag) whena 2 Ik. In practice box' consistency is
verified over the bounds ofIk = [a; b] if the relation
 con-
tains(I1; : : : ; Ik�1; Ik \ [a; da + 'e+]; Ik+1; : : : ; In) and
(I1; : : : ; Ik�1; Ik \ [bb� 'c�; b]; Ik+1; : : : ; In).
Definition 5 (BC'-narrowing operator). Let � � R

n be
a relation and
 � I

n an interval extension of�. Given
' 2 R

+ , a BC'-narrowing operator for
 is a univariate
narrowing operatornar of rank k 2 f1; : : : ; ng for � as-
sociating to everyI 2 I

n a vectorJ � I such that
 is
box' consistent ink andJ and BC(k;
; I) � J (weak
box consistency).

Unlike BC-narrowing operators, the implementation of
BC'-narrowing operators may influence the computed ap-
proximations since the previous definition may be verified
by a set of vectorsJ . In order to model the possible varia-
tions of' during propagation over a set of BC'-narrowing
operators, we define the notion ofBC�-narrowing operator
which corresponds to a family of BC'-narrowing operators
parameterized by'.

Definition 6 (BC�-narrowing operator). Let
 � I
n be

a relation. ABC�-narrowing operatorfor
 is a function
nar : R+�In ! I

n such that for every' 2 R
+ the function

I 7! nar('; I) is a BC'-narrowing operator for
 and for
every' > '0, nar('0; I) � nar('; I) for everyI 2 I

n.

It is worthwhile noting the links between the different
kinds of narrowing operators: given a BC�-narrowing op-
eratornar for
 � I

n, the functionI 7! nar(0; I) is a BC'-
narrowing operator for
 with ' = 0, and a BC-narrowing
operator for
.

4.2. Implementation of BC'-narrowing Operators

BC'-narrowing operators are implemented like BC-
narrowing operators [2] except that the dichotomic search
for quasi-zeros is stopped when the distance between the
quasi-zero and one bound of the corresponding domain is
smaller than'. For the sake of clarity, we only consider
thereafter the case of equational constraints of the form
f(x) = 0.

The functionNarrow' described in Table 2 is an imple-
mentation of BC�-narrowing operators. Given a real func-
tion f , an interval extensionF of f , a variablexk in f , an
interval extensionF 0 of @f=@xk and a boxI, the aim is
to enclose the external (leftmost and rightmost) quasi-zeros
in Ik of the interval functionF [k; I]. The new domain is
then the hull of both quasi-zeros that verify the constraint
F [k; I](Xk) = 0. During the search for the leftmost (resp.
rightmost) quasi-zero using the functionLnarrow' (resp.
Rnarrow') four cases are considered: if0 62 F (I) then
I is declared inconsistent; if0 62 F 0(I) thenIk contains at
most one quasi-zero ofF [k; I] in which case the Newton
method is applied; if0 2 F 0(I) thenIk is returned if its left
bound (resp. right bound) is box' consistent; otherwise,Ik
is split into two parts and the process is iterated from the
leftmost (resp. rightmost) sub-domain (dichotomic search
for the quasi-zeros).

Figure 1 describes the process for a real function in an
initial interval [a; b]: a BC-narrowing operator will com-
pute[c; d]; a BC'-narrowing operator will compute[c0; d0]
providing the width of both light-grey boxes is smaller than
'.

Proposition 1. Given F; F 0 two interval functions and
k 2 f1; : : : ; ng an integer, the functionnar : '; I 7!
Narrow'(F; F 0; k; '; I) is a k-rank BC�-narrowing oper-
ator.

Proof 1. In [5] the functionI 7! Narrow'(F; F 0; k; '; I)
is shown to be a BC'-narrowing operator of rankk. The
second property (generalization for BC�-narrowing op-
erators) follows from the monotonicity of interval exten-
sions. Given' > '0, both computations with' and '0

Table 2. Implementation of BC �-narrowing
operators.

Narrow' (F; F 0 : In! I; k: index of variable;
' : R+ ; I : In) : In

begin
if 0 62 F (I) then return ?

elif 0 62 F 0(I) then
return (I1; : : : ; Ik�1;

N�(F [k; I]; F 0[k; I]; Ik); Ik+1; : : : ; In)
else
J := Lnarrow' (F; F 0; k; '; I)
K := Rnarrow' (F; F 0; k; '; I)
return (I1; : : : ; Ik�1; [J;K]; Ik+1; : : : ; In)

endif
end

Lnarrow' (F; F 0 : In! I; k: index of variable;
' : R+ ; I : In) : I

begin
if 0 62 F (I) then return ? % inconsistency
elif 0 62 F 0(I) then

return N�(F [k; I]; F 0[k; I]; Ik) % box consistency
else
J := Ik \ [Ik ; dIk + 'e+]
if 0 2 F [k; I](J) then return Ik % box' consistency
else
I lk := [Ik; center(Ik)] % dichotomic search
Irk := [center(Ik); Ik]
K := Lnarrow' (F; F 0; k; '; (I1; : : : ; Ik�1; I

l
k;

Ik+1; : : : ; In))
if K 6= ? then return K
else return Lnarrow' (F; F 0; k; '; (I1; : : : ; Ik�1;

Irk ; Ik+1; : : : ; In))
endif

endif
endif

end

a bc dc’ d’

Figure 1. Searching for the external zeros of
a real function in [a; b].

f2

f1B2
B3

b

B1

a c d

Figure 2. Searching for the common leftmost
zero of two real functions in [a; b].

only differ in the third test inLnarrow'. Let J = Ik \
[Ik; dIk + '0e+] and K = Ik \ [Ik ; dIk + 'e+] � J .
SinceF [k; I](J) � F [k; I](K) by monotonicity ofF , we
have0 2 F [k; I](J)) 0 2 F [k; I](K). The inclusion
Narrow'(F; F 0; k; '0; I) � Narrow'(F; F 0; k; '; I) is then
guaranteed, which ends the proof (the proof forRnarrow'
is similar).

The superiority of box' consistency with respect to box
consistency is illustrated in Figure 2 that describes the
search for the leftmost common zero of two real functions
in the interval[a; b]. The idea is to enclose a local zero by
an interval of width' > 0 (the boxB1 is first computed
from [a; b] using f1, and then the boxB2 from [c; d] using
f2). However, a common zero (in BoxB3 computed from
[d; b] using f1) must be more tightly approximated. This
remark motivates the introduction of the propagation algo-
rithm presented in the next section.

Table 3. Box consistency algorithm BC '.

BC' (N ; N : sets of BC�-narrowing operators;I : In) : In

begin
Snar:= fnar 2 N j nar(0; I) 6= Ig % first selection
J := RemoveBounds (Snar; I)
if Snar= ? then

return I % box consistency
else

Index:= fk j 9 nar 2 Snar^ k is the rank ofnarg
Snar0 := Select a subset ofSnar % end of selection
K := Contract' (Snar0;J) % intensification
if K = ? then

return ? % inconsistency
else % propagation
M := fnar 2 N j 9k 2 Index^ nar depends onkg
return BC' (N ;M;K)

endif
endif

end

4.3. A New Propagation Algorithm for Box Consis-
tency

As said previously, the application of BC-narrowing op-
erators is time-consuming while the precision they provide
(enclosure of extreme quasi-zeros by canonical intervals) is
often useless. We then propose a new propagation strat-
egy for box consistency implemented by AlgorithmBC'

described in Table 3. The main idea is to realize a selec-
tion among an input set of BC�-narrowing operators and to
apply the selected ones without updating the internal struc-
tures. Furthermore, the value of' decreases with respect to
the distance from the current domains to the global fixed-
point. More precisely the algorithm consists in an iteration
of three consecutive stages:

Selection. The setSnaris the subset of narrowing operators
in N for whichI is not a fixed-point. IfSnaris empty
thenI is a fixed-point of everynar 2 N with ' = 0,
which guarantees the computation of box consistency,
andBC' terminates. The conditionnar(0; I) = I can
be efficiently tested since it is sufficient verifying that
the canonical intervals at bounds of domains are quasi-
zeros of the corresponding interval function. These
canonical intervals are removed fromI if the condi-
tion is not verified. The result isJ , computed by the
functionRemoveBounds.
The setIndexcontains all the indices of the variables
whose domain is contracted by the application of one
narrowing operator fromSnar, i.e. the set of ranks of
all the operatorsnar in Snar.

The setSnar0 computed bySelect contains onek-rank
narrowing operatornar 2 Snar for everyk 2 Index.
The idea is to select the most contracting narrowing
operator for each variable domain which is tightened.
The contractance of an operatornar 2 Snaris the dis-
tance betweenI andnar(0; I);

Intensification. The aim of Contract' is to apply in
sequence—without updating internal structures—the
selected narrowing operators fromSnar0. No condition
is required to stop this stage; in particular, the compu-
tation of a fixed-point is not mandatory. In practice, an
efficient heuristic is to remove fromSnar0 every nar-
rowing operator whose two last applications left the
domains unchanged. In this case the end of the stage is
detected when eitherSnar0 or the domains are empty.
BC' stops whenever the domains become empty.
The setSnar0 is sorted into descending order of the
weights of the narrowing operators it contains, where
theweightof a k-rank narrowing operator is the num-
ber of narrowing operators inSnar0 that depend onk.
The aim is to maximize the size of contractions result-
ing from the interaction between narrowing operators.
Intuitively, the application of ak-rank narrowing oper-
ator before the application of aj-rank narrowing oper-
ator not depending onk does not lead to more contrac-
tion of the domain ofxj ;

Propagation. A property of both previous stages is that ev-
ery narrowing operatornar 2 N that does not depend
on anyk in Indexis such thatnar(0;K) =K. The re-
sult is thatM (next set of narrowing operators to con-
sider) is composed of all narrowing operators fromN
depending on ak in Index. Hence, the propagation is
independent from the intensification stage and theSe-
lect implementation.
An efficient implementation minimizing the costs of
updates is to create first the list of all the constraints
containing a variablexk with k 2 Index. If one asso-
ciates to each constraint the array of all the narrowing
operators created from it, the setM may then be built
by concatenating2 all the arrays.

An important point is the decreasing of the' parame-
ter during the intensification stage. This parameter is an
estimate of the distance from the current domains to the fi-
nal domains. Intuitively, the precision of the approxima-
tions computed by the BC'-narrowing operators must in-
crease when the current domains get closer to the global
fixed-point. In other words, the value of' must decrease
when the widths of the last domains contractions decrease
(see Figure 2). A method for computing the value of' is
as follows: to associate to eachk-rank narrowing operator

2This operation is efficiently implemented inC by memcpy().

nar 2 Snar0 (operator used in the intensification stage) the
sizew of the contraction of the domain of the variablexk
at the time of its last application. More precisely the initial
value isw = width(Ik). After each applicationJ := nar(I),
it becomesw = distance(Ik ; Jk). The value of' is dynam-
ically computed asmax(0;

p
W � 0:125) whereW is the

average of the valuesw associated to all the narrowing op-
erators inSnar0. Doing so,' decreases whenW decreases
and it becomes0 when

p
W is smaller than0:125, which

prevents some slow convergence phenomena by comput-
ing box consistency (best possible approximation) when the
global fixed-point is almost found.

The following propositions state thatBC' computes box
consistency and may then replaceBC3.

Proposition 2. BC'(N ;N ; I) terminates for every set of
BC�-narrowing operatorsN and every interval vectorI .

Proof 2. The current domains are returned whenever Snar
is empty. If Snar is not empty, the application of
RemoveBounds strictly contractsI . ThenBC' terminates
since every non-terminal step is contracting and the search
space is finite.

Proposition 3. Let N be a set of BC�-narrowing opera-
tors andN 0 the set of BC-narrowing operators obtained
fromN by replacing every functionnar by I 7! nar(0; I).
Then for everyI 2 I

n, BC'(N ;N ; I) is equivalent to
BC3(N 0;N 0; I).

Proof 3. The final vector of domains fromBC' is a fixed-
point of every functionI 7! nar(0; I) (narrowing operators
used inBC3) which is the condition tested during the selec-
tion stage. The proof then follows since every intermediate
approximation is necessarily included in the greatest com-
mon fixed-point included in the initial vector of domains.

4.4. Bisection and Minimal Propagation

Constraint propagation algorithms tighten the domains
of variables involved in constraint systems. In order to sep-
arate the solutions, they are generally embedded in a bi-
section algorithm that iteratively prunes by propagation the
domains split into sub-domains if the required precision is
not yet reached.

We present the constraint solving algorithmBisect in Ta-
ble 4 that uses the propagation algorithmBC'. The first
call is Bisect (N ; f1; : : : ; ng; "; I) where" is the required
precision of domains. All other calls after the bisection of
the domain of the variablexk initialize the propagation with
only the narrowing operators depending onk. The function
Divide splitsJk (in practice the component ofJ of greatest
width) in l parts (in practice two or three parts) such that the
width of Jk is greater than" andJ = J1 [� � � [J l. The

Table 4. The constraint solving algorithm.

Bisect (N : set of BC�-narrowing operators;
S : set of indices of variables;
" : R+ ; I : In) : set ofIn

begin
J := BC'(N ; fnar 2 N j 9k 2 S ^ nar depends onkg; I)
if J = ? or width(J) 6 " then return fJg
else
(k;J1; : : : ;J l) := Divide (J ; ")
return Bisect (N ; fkg; ";J1) [� � � [

Bisect (N ; fkg; ";J l)
endif

end

result is a set of vectors of domains containing the solution
set of the initial constraint system.

In practice, there exists some problems whose solving
requires many bisections compared to the domains con-
tractions computed by constraint propagation. In this case
the propagation algorithm must be able to efficiently detect
when the input domains given by the bisection algorithm
are a fixed-point of the narrowing operators.

5. Experimental Results

The constraint solving algorithm has been tested on
some examples from numerical analysis and CLP(Intervals)
benchmarks [14, 5]. The input set of narrowing opera-
tors is computed from the natural interval extensions of the
user’s constraints. Table 5 presents the computational re-
sults obtained on a Sun UltraSparc 2 (166 MHz). Figures
in columns are the computation times for different propaga-
tion algorithms:BC3 andBC' for the corresponding algo-
rithms,BC0 for BC' where the value of' is always0:0 (i.e.
BC' using BC-narrowing operators and the new propaga-
tion strategy based on the intensification of some operators)
andBC1=8 for BC' where the value of' is always0:125.
The results ofBC3, BC0 andBC' are a fixed-point (com-
putation of box consistency), whileBC1=8 may stop before
the computation of a fixed-point when all the distances be-
tween the interval functions’ quasi-zeros and the bounds of
domains are smaller than0:125. The last column indicates
the gain ofBC' with respect toBC3.

Problem “Broydenv” is the Broyden-Banded functions
with v variables:
8><
>:

xk(2 + 5x2k) + 1�Pj2Jk
xj(1 + xj) = 0

1 6 k 6 v xi 2 [�108;+108]
Jk = fj j j 6= k;max(1; i� 5) 6 j 6 min(v; i+ 1)g

Table 5. Comparison between box consis-
tency algorithms (times in seconds).

Problem v BC3 BC0 BC1=8 BC' %
Broyden 10 1.8 0.7 0.2 0.2 9

20 4.2 1.5 0.4 0.3 14
40 10.2 3.5 0.9 0.7 14
80 25.5 8.7 2.0 1.8 14

160 67.1 23.4 5.1 4.4 15
320 190.2 81.2 14.7 12.6 15

Cosnard 10 2.0 0.6 0.2 0.120
20 13.5 2.5 0.9 0.5 27
40 102.2 12.7 4.6 2.9 35
80 950.5 80.1 29.8 18.6 51

Griewank 2 5.0 4.5 1.8 2.5 2
Kearfott 4 5.3 3.1 2.3 2.1 2
i2�10 10 1.0 0.2 0.2 0.2 5
Powell 4 5.5 0.2 0.2 0.1 55

Thev-dimensional problem “Cosnardv” corresponds to the
Moré-Cosnard equations resulting from the discretization of
a nonlinear integral equation:

8><
>:

xk +
1

2
[(1� tk)

Pk
j=1 tj(xj + tj + 1)3+

tk
Pv

j=k+1(1� tj)(xj + tj + 1)2] = 0

1 6 k 6 v tj = jh h = 1=(v + 1) xi 2 [�4; 5]

Constraint propagation using BC'-narrowing operators is
able to compute the best possible approximations for the so-
lutions of these two problems (bisection is useless). Their
scalability permits illustrating the behaviours of the differ-
ent algorithms when the dimension increases. In particular
the time growth is almost linear for the Broyden problem
and quadratic for the Cosnard problem. Benchmark “i2” is
also a problem from interval analysis. The other problems
(“Griewank”, “Kearfott”, “Powell”) are used since the com-
putation of the solutions requires bisection (the precision"
is set to10�8).

The comparison ofBC3 and BC0 which use the same
narrowing operators permits exhibiting the efficiency of the
new propagation strategy. The results for Broyden indicate
thatBC0 is twice faster whatever the dimension is. The con-
stant improvement factor comes from the problem regular-
ity: a constant number of narrowing operators is selected
and their costs are almost the same due to the smoothness
of constraint expressions. This factor increases with the di-
mension for Cosnard (3 for 10 variables, and more than 10
for 80 variables) since the constraint expressions become
more complex when the dimension increases.

The comparison ofBC0 andBC1=8 shows the need for
implementing box' consistency in order to prevent some
slow convergence phenomena during the search for the local
quasi-zeros of interval functions. The improvement factor is
constant for Cosnard (about 3) while it linearly increases for
Broyden (from 3.5 for 10 variables to 5.5 for 320 variables).

The comparison ofBC1=8 andBC' demonstrates a small
acceleration resulting from a good estimate of the distance
from the current domains to the global fixed-point. The
major improvement concerns the precision of the final do-
mains. For example, the maximal precision (box consis-
tency) is required for Griewank problem in order to limit
the generation of a huge amount of sub-domains.BC1=8 is
faster on this example but generates nine domains which do
not contain any solution (and one enclosing the solution) in
315 bisections.BC' only computes one domain enclosing
the solution in 163 bisections.

Finally the comparison ofBC' and BC3 (last column)
illustrates the efficiency ofBC' resulting from the com-
plementarity of the new techniques proposed in this pa-
per (box' consistency and propagation strategy). The im-
provement factor is almost constant for Broyden while it
increases for Cosnard (from 20 for 10 variables to 51 for 80
variables). In practice, no benchmark illustrating a signifi-
cant slowdown ofBC' has been found.

6. Conclusion

In this paper, box' consistency, a weakening of box con-
sistency, has first been introduced; we have then described
an efficient implementation of box consistency that relies
on the above-mentioned coarser consistency notion and on
a new propagation strategy intensifying the application of
the most contracting narrowing operators. Experimental
evidences show that the new algorithm for enforcing box
consistency leads to significant speeds-up for some standard
benchmarks.

The computation of' and the intensification strategy
are based on two heuristics. A possible refinement would
come from the implementation of some techniques from lo-
cal search in order to capture the quality (tightening ability)
of narrowing operators that is dynamic in essence.

Due to lack of space, a main feature ofBC' has not been
discussed, namely its nice properties for parallelization. A
first approach would exploit the independence of the selec-
tion stage computations that may easily be distributed.

Acknowledgments

Discussions with Olivier Lhomme are gratefully ac-
knowledged.

References

[1] F. Benhamou. Heterogeneous Constraint Solving. InProc. of
Algebraic and Logic Programming, volume 1139 ofLNCS,
1996.

[2] F. Benhamou, D. McAllester, and P. Van Hentenryck.
CLP(Intervals) Revisited. InProc. of International Logic
Programming Symposium. MIT Press, 1994.

[3] J. G. Cleary. Logical Arithmetic.Future Computing Systems,
2(2):125–149, 1987.

[4] E. Davis. Constraint Propagation with Interval Labels.Arti-
ficial Intelligence, 32:281–331, 1987.

[5] F. Goualard, F. Benhamou, and L. Granvilliers. An Exten-
sion of the WAM for Hybrid Interval Solvers.Journal of
Functional and Logic Programming, 1999.

[6] E. R. Hansen.Global Optimization using Interval Analysis.
Marcel Dekker, 1992.

[7] E. Hyvönen. Constraint Reasoning based on Interval Arith-
metic. The Tolerance Propagation Approach.Artificial Intel-
ligence, 58:71–112, 1992.

[8] IEEE. IEEE standard for binary floating-point arithmetic.
Technical Report IEEE Std 754-1985, Institute of Electrical
and Electronics Engineers, 1985. Reaffirmed 1990.

[9] O. Lhomme. Consistency techniques for numeric CSPs. In
Proc. of International Joint Conference on Artificial Intelli-
gence, 1993.

[10] O. Lhomme, A. Gotlieb, and M. Rueher. Dynamic Opti-
mization of Interval Narrowing Algorithms.Journal of Logic
Programming, 37(1–2):165–183, 1998.

[11] A. Mackworth. Consistency in Networks of Relations.Arti-
ficial Intelligence, 8(1):99–118, 1977.

[12] R. E. Moore. Interval Analysis. Prentice-Hall, Englewood
Cliffs, NJ, 1966.

[13] P. Van Hentenryck, L. Michel, and F. Benhamou. Newton
- Constraint Programming over Nonlinear Constraints.Sci-
ence of Computer Programming, 30(1–2):83–118, 1998.

[14] P. Van Hentenryck, L. Michel, and Y. Deville.Numerica:
a Modeling Language for Global Optimization. MIT Press,
1997.

