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Abstract stage occurs—splitting of the domains—to separate solu-
tions and obtain tighter domains that could have been ob-
Interval constraint solvers use local consistencies— tained by constraint propagation alone.

among which one worth mentioning is box consistency—  The finite precision of machine arithmetic prevents from
for computing verified solutions of real constraint systems. achieving arc consistency over continuous domains. Hence,
Though among the most efficient ones, the algorithm for coarser consistencies are used in practice, among which one
enforcing box consistency suffers from the use of time-may cite box consistency [2]. An algorithm enforcing box
consuming operators. This paper first introducesboan-  consistency was first implementedniewton [13] by a di-
sistency, a weakening of box consistency; this new notionchotomic search combined with an interval Newton method.
then allows us to devise an adaptive algorithm that com- The consistency is enforced over a constraint system by
putes box consistency by enforcing baonsistency, de-  propagation BC3 algorithm) that combines the local ap-
creasing thep parameter as variables’ domains get tight- proximations from every constraint. Two recent works have
ened, then achieving eventually lgaonsistency, whichis  discussed the convergence of such algorithms. On the one
equivalentto box consistency. A new propagation algorithm hand, the authors [5] have proposed to weaken the precision
is also given, that intensifies the use of the most contractingof the local approximations computed Bg3 with the con-
pruning functions based on bgxconsistency. The result-  sequence that the final domains may not be box consistent.
ing algorithm is finally shown to outperform the original On the other hand, Lhomnet al.[10] have defined a new
scheme for enforcing box consistency on a set of standarcyropagation algorithm for 2B consistency which essentially

benchmarks. intensifies the application of the most contracting pruning
functions.

This paper is an attempt to combine both above-

1. Introduction mentioned techniques for implementing box consistency.

More precisely, a weakening of box consistency céiex,

The use of interval analysis [12] for solving continu- consistencyis introduced. Both notions are very close;
ous constraint systems in the framework of logic program- hence, the implementation of an algorithm for pason-
ming is a step to reconcile logic and numerical computa- Sistency is straightforward. Bgxconsistency then allows
tions. The starting point is the seminal work of Cleary [3] Us to devise a new adaptive propagation algorigey for
who introduced a relational form of interval arithmetic. achieving box consistency that iterates two steps: a selec-
Originating from these ideas, various extensions have beerfion of the most contracting pruning functions enforcing
proposed and implemented in CLP(Intervals) systems like POX, consistency; and their application in sequence with-
CLP(BNR), Interlog, Newton, ProloglV andDecLIC for solv- out any propagation. The key point is that the algorithm
ing interval constraint§4, 7, 9, 2]. increases the precision of the computed consistency by de-

The constraint solving algorithm is basically an iteration creasing thep parameter the more variables’ domains are
of two steps: first, an interval-based pruning operator as-tightened (that is; is an estimate of the distance to the
sociated to each constraint of the system to be solved disglobal fixed-point). Hence, the computed consistency is
cards from the variables’ domains some of the values thateventually box consistency. Preliminary results from a pro-
are inconsistent with the constraifbal consistencguch  totype show a significant speed-up with respe®@3.
as arc consistency [11]); the domain modifications are then The rest of the paper is organized as follows. Section 2
propagated to the other constraints for reinvocation of their introduces the materials from constraints and interval anal-
pruning operator. When quiescence is reachdadsection ysis. Section 3 presents the notion of box consistency and



the framework of constraint propagation. Section 4 defines f (resp.f’) andI be an interval containing both andz,
the notion of boy consistency, its implementation and the such thatz € midpoint(I) and0 ¢ F'(I). Since is in
new propagation strategy. Section 5 analyses the experi, it follows f'(¢) € F'(I), and thenzy € N(I), where
mental results. Finally, Section 6 discusses some directionsV (I) = midpoint(I) — F (midpoint(I))/F"'(I). By hypoth-

for further developments.

2. Preliminaries

Let R be the set of real numbers afidC R a set of
binary floating-point numbers [8] (shortened thereafter to
floats). Given a real number let [r| (resp. [r]) be the

esis,zp is in I; consequentlyyy € I N N(I). One may
then devise an algorithm for finding a zero pitontained
in an intervalI® by applying the stedi*!:=T' N N(I?)
from I°. Iterations converge sindgis finite and each step
is contracting. LetV*(F, F’, I°) be the fixed-point of this
iterating process.

greatest float smaller or equal (resp. lowest float greater or2-2- Constraints

equal) tharr. Given a floatg, let g~ be the greatest float
smaller tharg, andg* the lowest float greater than

2.1. Interval Analysis

Anintervall is a set of real numbefg e R | I <r <
T} written [I, I] where boundd andI are elements oF.
Let I be the set of all intervals. A Cartesian producof
intervalsl; x - -- x I, is called abox Thereafter, boldfaced

A constraint is a first-order atomic formula over
the structure of realgR, O, {<,=,>})—where O is
a set of operation symbols—and the set of variables
{z1,...,2z,}. Given a constrainte(zyy,...,zk), let
plc) = {(a1,...,a,) € R* | (ak1,-..,ar) € c} be the
relation obtained by an operation of cylindrificationcén-
straint systenis a coupleC’ = (C, I'' made of a set of con-
straintsC = {cy,...,cn } and an interval vectaF wherel,

letters denote either a vector or a Cartesian product, dependS the domain of possible values fef. Thesolution sebf

ing on the context. A nonempty interal b] is saidcanon-
ical wheneveb < a*. GivenI = [a,b] andr = (a + b)/2,
the centerof I is |r], theinterval midpointof I is [|r], [r]]
and thewidth of I is [b — a]. Thewidth of the boxI is the
maximum of the widths componentwise. Tdistancebe-
tweenl = [a,b] andJ = [e,d]is [[|c—a|]+ [|b—d|]].
The distancebetweenl € I"™ andJ € I" is the sum of
the distances componentwise. Lill(p) be the smallest
interval containing the relatiop C R.

Definition 1 (Interval extensions). An inclusion mono-
tonic function F: I"™ — 1 is an interval extensionof
f:R* > Rifforeveryl e I",re I = f(r) € F(I).

A relationQ) C 1" is aninterval extensiomf p C R™ if for
everyl e 1", INp#@=>1¢c.

A quasi-zeroof an interval functionf’ : T — Tis a
canonical interval verifying 0 € F(I). Given an interval
functionF(Xy,...,X,), anintegek € {1,...,n},andan
interval vectorI € 1", F'[k, I] corresponds to the interval
functionXy — F(I1,..., Tr—1, Xk, Tgw1,- - -, In).

The univariate interval Newton method [12] is an adap-
tation based on interval analysis of the Newton root finding
method for real functions derived from the mean value the-
orem (see [6] for a more complete presentation).

Theorem 1 (Mean value). Let z, zo be real numbers and
f : R = Rafunction with continuous first order derivative.
Then, there exists € R betweernx andxz, such thatf (x) —

f(zo) = f1(§)(z — z0).

If zo is a zero off, Theorem 1 leads tag = = —
f(@)/f'(€). Let F (resp.F’) be an interval extension of

CisINnp(cr)N---Nplem).
3. Box consistency

Box consistency [2] is an approximation of arc con-
sistency over intervals that is efficiently implemented by
means of interval Newton methodsNewton [13] andNu-
merica [14]. It is defined in terms of quasi-zeros of some
interval extensions of real relations.

Definition 2 (Box consistency).A relation) C 1" is box
consistentn somek € {1,...,n} andI € I"if

I, = HU”({G, €I |

(Il, . .,Ik_l, HU||({a}),Ik+1, - ,In) € Q})

As described in [1], solving a constraint system consists
in iteratively applying some contracting functions called
narrowing operators. Aarrowing operatorfor a relation
p C R™ is a contracting and monotonic functioar : 1™ —

I" such thatf N p C nar(I) for everyI € I" (correctness).
Furthermore, a narrowing operator is said toupévariate
of rankk if I andnar(I) only differ in thek-th component
for everyI € I™. A narrowing operatonar for the relation
p(c) of a constraint(zy;, . . ., xx ) is saidto depend orthe
integersk1,. . ., kl. BC-narrowing operatorsire narrowing
operators devoted to the computation of box consistency.

Definition 3 (BC-narrowing operator). Letp C R" be a
relation and2 C I™ an interval extension gp. A BC-
narrowing operator fof) is a univariate narrowing oper-
ator nar of rankk € {1,...,n} for p that associates to



4. Box, consistenc
Table 1. Box consistency algorithm BC3. %o y

BC3 (\V, N : sets of BC-narrowing operatorg;: I7) : 1" Box consistency effectiveness comes from its ability to
’% N set of operators to re-apply o locally cancel the so-calledependency probleof interval

arithmetic [12]. However, its actual implementation suffers

begin o . ;
if N=aorl=athenreturn I from some drawbgcks. first, app_lymg a BC-narrowing op-
else erator is computationally expensive and leads to the unnec-

essary computation of a local fixed-point per operator; sec-
ond, BC-narrowing operators do not ensure in practice the
J = nar(I) % contraction same arn_ount of d_omain tightgning. We addre;s these prob-
if J, I, then % propagation Iems_by flrstdefmlng)ox_p consistencya weakening of box
M =N U {nar € \ | nar’ depends ot} consistency. Bq; cons_lstency then allows us tq devise a
new propagation algorithm, call&t,,, for computing box

nar := one element ofV % selection
k := rank ofnar

% nar can be removed fromy/ if it is idempotent

elseM := N\ {nar} %nar(I) =1 consistency.
endif _
return BC3 (A, M, J) 4.1. Definitions
endif ) o
end Box consistency ensures a property on canonical inter-

vals at bounds of the variables’ domains. In contrast,box

consistency imposes a weaker condition by replacing the

canonical intervals by intervals of width. Intuitively this
everyI € 1™ the greatest sub-boJ of I such that(} is corresponds to the replacement in Definition 2 of the hull of
box consistent irk and J. The vectomar(I) is denoted a (best possible approximation) by an interval included in
BC (k,Q,I). I}, whose width is smaller thap.

Definition 4 (box,, consistency).Lety € R be a positive
Note thatBC (k, 2, I) is independent from the actual real number. A relatiorf2 C 1" is box, consistent in some

implementation of BC-narrowing operators. It character- ¢ € {1,...,n} andI € I"if

izes the approximation computed by any narrowing opera-

tor that implements box consistency with respectand I, =Hull({a € It | (I, ..., Ix 1,

k. This is related to the notion @haximal box consistency I, N Hull({a,a + ¢}), Iit1, - .., In) € 2})

in the literature.

] ) o Note that box consistency is equivalent to baonsis-
Solving a constraint systedt, I) consists in two con-

: >Y> tency withy = 0 since them+¢ = a andI; NHull({a}) =
secutive stages. Aompilation stagecreates a set of BC- Hull({a}) whena € Ij. In practice boy consistency is

narrowing opergtors\f as follqws: for every constraint \qrified over the bounds df, = [a, b] if the relation® con-
c E.C, for every interval extens@rﬂ of p(c) and fqr every  tains(li,...,I_1, I Na, [a + ¢]*], Tesr,. .., I,) and
variablez; € c, the set\' contains a BC-narrowing oper- (1 I I b— ol bl T I
. . (1,- -akflaka_ @J 7]7 k415 - 7n)

ator of rankk for Q2. The propagation algorithrBC3 de-

scribed in Table 1 combines the approximations computedDefinition 5 (BC-narrowing operator). Letp C R* be
by all the narrowing operators froif” until none ofthemis  a relation and2 C I"™ an interval extension gf. Given
able to further tighten the domains. The final vector of do- ¢ € R", a BC,-narrowing operator fof? is a univariate
mains is the greatest common fixed-point of the narrowing narrowing operatornar of rankk € {1,...,n} for p as-
operators included in the initial domains. sociating to everl € 1™ a vectorJ C I such that() is

The main feature d8C3 is to maintain the set’ \ N of 00X, consistent ink and J and BC(k, 2, I) € J (weak
narrowing operators for which the current domains are nec-POX consistency).

essarily a fixed-point. This process is easily implemented  ypjike BC-narrowing operators, the implementation of
since the relation depends ohis static and can be cre-  Bc_-narrowing operators may influence the computed ap-
ated at compile-time. However the updates of structures proximations since the previous definition may be verified
after each application of a narrowing operator are time- py 5 set of vectord. In order to model the possible varia-
consuming (see [10]). tions of p during propagation over a set of B@arrowing
operators, we define the notionBE®-narrowing operator

IFor example the natural interval extension or the Taylor interval ex- WhIch Corr?SpondS to a family of BEnarrowing operators
tension [14]. parameterized by.




Definition 6 (BC®-narrowing operator). LetQ C 1" be
a relation. ABC®-narrowing operatofor (2 is a function
nar: RT x 1" — 1" such that for every € R* the function
I — nar(yp, I) is a BC,-narrowing operator for2 and for
everyp > ¢', nar(yp’, I) C nar(p, I) for everyI € 1™

It is worthwhile noting the links between the different
kinds of narrowing operators: given a B&harrowing op-
eratomar for Q C I, the functionl — nar(0, I) is a BC,-
narrowing operator fof? with ¢ = 0, and a BC-narrowing
operator for2.

4.2. Implementation of BC,-narrowing Operators

BC,-narrowing operators are implemented like BC-
narrowing operators [2] except that the dichotomic search

for quasi-zeros is stopped when the distance between the

Table 2. Implementation of BC @®-narrowing
operators.

Narrowy (F, F': 1™ — I; k: index of variable;

p:RY; I:17: 1"

begin

if 0 ¢ F(I)thenreturn @
elif 0 ¢ F'(I) then
return (Iy,...,Ix_1,

N*(Flk, I, F'[k, I, It), g 41, - - -, In)

quasi-zero and one bound of the corresponding domain is else

smaller thanp. For the sake of clarity, we only consider

thereafter the case of equational constraints of the form

f(x) =0.

The functionNarrowy described in Table 2 is an imple-
mentation of B@-narrowing operators. Given a real func-
tion f, an interval extensio®’ of f, a variablez;, in f, an
interval extensior¥” of 9f/0x; and a boxI, the aim is

to enclose the external (leftmost and rightmost) quasi-zeros

in I, of the interval functionF'[k, I]. The new domain is
then the hull of both quasi-zeros that verify the constraint
F[k, I(X) = 0. During the search for the leftmost (resp.
rightmost) quasi-zero using the functidnarrowy (resp.
Rnarrowyp) four cases are considered: (if ¢ F(I) then

I is declared inconsistent; if ¢ F'(I) thenlI, contains at
most one quasi-zero df [k, I] in which case the Newton
method is applied; 6 € F'(I) thenl} is returned if its left
bound (resp. right bound) is bgxconsistent; otherwisdy,

is split into two parts and the process is iterated from the
leftmost (resp. rightmost) sub-domain (dichotomic search
for the quasi-zeros).

Figure 1 describes the process for a real function in an
initial interval [a,b]: a BC-narrowing operator will com-
pute[c, d]; a BC,-narrowing operator will computk’, d']
providing the width of both light-grey boxes is smaller than
p.

Proposition 1. Given F, F’ two interval functions and
k € {1,...,n} an integer, the functiomar: ¢, I —

Narrowp (F, F' k, @, I) is a k-rank BGP-narrowing oper-
ator.

Proof 1. In [5] the functionI — Narrowp(F, F' k, ¢, I)
is shown to be a Bgnarrowing operator of ranks. The
second property (generalization for B@arrowing op-
erators) follows from the monotonicity of interval exten-
sions. Giveny > ¢/, both computations witkp and ¢’

J :=Lnarrowy (F,F' k,¢,I)

K :=Rnarrowp (F, F' k,p, I)

return (Ip,..., Iy 1,[J, K], Ixs1,- ..
endif

) In)

end

Lnarrowy (F, F' : T" — T; k: index of variable;

p:RY; IT:17%:1

begin

if 0 ¢ F(I)thenreturn @ % inconsistency
elif 0 ¢ F'(I) then
return N*(F[k,I], F'[k,I],I;) % box consistency
else
Ji= L0 (I, [T+ 0]7]
if 0 € F[k, I](J)thenreturn I; % box, consistency
else
Il := [I,center(I;)] % dichotomic search
IT := [center(I},), I1]
K :=Lnarrowy (F, F' k, ¢, (I1,...,Ir_1, I},
D1, 1n))
if K # @thenreturn K

else return Lnarrowy (F, F', k, @, (I1,. .., Ix—1,
IN I, In))
endif
endif
endif

end
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Figure 1. Searching for the external zeros of
[a, b].

a real function in

a

By J

Figure 2. Searching for the common leftmost
zero of two real functionsin  [a, b].

only differ in the third test inLnarrowyp. LetJ = I N

U, [ + @17 and K = I, N I, [I, + ¢]T] 2 J.

SinceF'[k, I|(J) C Flk,I|(K) by monotonicity of’, we
have0 € F[k,I|(J) = 0 € F[k,I|(K). The inclusion
Narrowp (F, F' k,¢', I') C Narrowp(F, F' k, ¢, I) is then
guaranteed, which ends the proof (the proof Rerarrow

is similar).

The superiority of boy consistency with respect to box
consistency is illustrated in Figure 2 that describes the
search for the leftmost common zero of two real functions
in the intervalla, b]. The idea is to enclose a local zero by
an interval of widthy > 0 (the boxBL1 is first computed
from [a, b] usingf1, and then the bo®2 from [c, d] using
f2). However, a common zero (in Ba&3 computed from
[d, b] usingfl) must be more tightly approximated. This
remark motivates the introduction of the propagation algo-
rithm presented in the next section.

Table 3. Box consistency algorithm BC .
BC,, (N, N : sets of B@-narrowing operatorsf : ") : "
begin
Snar:= {nar € N | nar(0,I) # I} %first selection
J := RemoveBounds (Snar, I)
if Shar= & then
return I % box consistency
else
Index:= {k | Inar € SnarA k is the rank ohar}
Snaf := Select a subset oSnar % end of selection
K := Contractp (Snaf,J) % intensification
if K = @ then
return & % inconsistency
else % propagation
M :={nar € N'| 3k € Index A nar depends ot}
return BC, (N, M, K)
endif
endif
end

4.3. A New Propagation Algorithm for Box Consis-
tency

As said previously, the application of BC-narrowing op-
erators is time-consuming while the precision they provide
(enclosure of extreme quasi-zeros by canonical intervals) is
often useless. We then propose a new propagation strat-
egy for box consistency implemented by Algoritiée,,
described in Table 3. The main idea is to realize a selec-
tion among an input set of B&narrowing operators and to
apply the selected ones without updating the internal struc-
tures. Furthermore, the value pfdecreases with respect to
the distance from the current domains to the global fixed-
point. More precisely the algorithm consists in an iteration
of three consecutive stages:

Selection. The setSnaris the subset of narrowing operators
in NV for which I is not a fixed-point. IfSnaris empty
thenI is a fixed-point of everyiar € N with ¢ = 0,
which guarantees the computation of box consistency,
andBC,, terminates. The conditiomar(0, I) = I can
be efficiently tested since it is sufficient verifying that
the canonical intervals at bounds of domains are quasi-
zeros of the corresponding interval function. These
canonical intervals are removed framif the condi-
tion is not verified. The result i, computed by the
functionRemoveBounds.

The setindexcontains all the indices of the variables
whose domain is contracted by the application of one
narrowing operator fronsnar, i.e. the set of ranks of
all the operatoraar in Snar



The setSnaf computed bySelect contains oné-rank
narrowing operatonar € Snarfor everyk € Index
The idea is to select the most contracting narrowing
operator for each variable domain which is tightened.
The contractance of an operatar € Snaris the dis-
tance betweedf andnar(0, I);

Intensification. The aim of Contracty is to apply in
sequence—without updating internal structures—the
selected narrowing operators fr@naf. No condition
is required to stop this stage; in particular, the compu-
tation of a fixed-point is not mandatory. In practice, an
efficient heuristic is to remove froiBnaf every nar-
rowing operator whose two last applications left the

domains unchanged. In this case the end of the stage is

detected when eithednaf or the domains are empty.
BC,, stops whenever the domains become empty.
The setSnaf is sorted into descending order of the
weights of the narrowing operators it contains, where
theweightof a k-rank narrowing operator is the num-
ber of narrowing operators iinaf that depend otk.
The aim is to maximize the size of contractions result-
ing from the interaction between narrowing operators.
Intuitively, the application of &-rank narrowing oper-
ator before the application ofjarank narrowing oper-
ator not depending ol does not lead to more contrac-
tion of the domain of:;;

Propagation. A property of both previous stages is that ev-
ery narrowing operatarar € A that does not depend
on anyk in Indexis such thabar(0, K) = K. The re-
sult is thatd/ (next set of narrowing operators to con-
sider) is composed of all narrowing operators frafm
depending on & in Index Hence, the propagation is
independent from the intensification stage and3be
lect implementation.

An efficient implementation minimizing the costs of
updates is to create first the list of all the constraints
containing a variable;, with & € Index If one asso-
ciates to each constraint the array of all the narrowing
operators created from it, the skt may then be built
by concatenatirfgall the arrays.

An important point is the decreasing of tigeparame-
ter during the intensification stage. This parameter is an
estimate of the distance from the current domains to the fi-
nal domains. Intuitively, the precision of the approxima-
tions computed by the BGnarrowing operators must in-

nar € Snaf (operator used in the intensification stage) the
sizew of the contraction of the domain of the variahlg
at the time of its last application. More precisely the initial
value isw = width(I}). After each applicatiod :=nar(I),
it becomesy = distancély, Ji,). The value ofp is dynam-
ically computed asnax (0, W — 0.125) whereV is the
average of the valuas associated to all the narrowing op-
erators inSnaf. Doing so,p decreases whei decreases
and it become$® when+/W is smaller thar0.125, which
prevents some slow convergence phenomena by comput-
ing box consistency (best possible approximation) when the
global fixed-point is almost found.

The following propositions state thBC,, computes box
consistency and may then repla&@s.

Proposition 2. BC, (N, N, I) terminates for every set of
BC®-narrowing operators\” and every interval vectaof.

Proof 2. The current domains are returned whenever Snar
is empty. If Snar is not empty, the application of
RemoveBounds strictly contractsI. ThenBC,, terminates
since every non-terminal step is contracting and the search
space is finite.

Proposition 3. Let A" be a set of B@-narrowing opera-
tors and /' the set of BC-narrowing operators obtained
from NV by replacing every functionar by I ~ nar(0, I).
Then for everyI € 1", BC,(N,N,I) is equivalent to
BC3(N',N', I).

Proof 3. The final vector of domains froBC,, is a fixed-
point of every functiod — nar(0, I) (narrowing operators
used inBC3) which is the condition tested during the selec-
tion stage. The proof then follows since every intermediate
approximation is necessarily included in the greatest com-
mon fixed-point included in the initial vector of domains.

4.4, Bisection and Minimal Propagation

Constraint propagation algorithms tighten the domains
of variables involved in constraint systems. In order to sep-
arate the solutions, they are generally embedded in a bi-
section algorithm that iteratively prunes by propagation the
domains split into sub-domains if the required precision is
not yet reached.

We present the constraint solving algoritBigect in Ta-
ble 4 that uses the propagation algorit®@,. The first
call is Bisect (N, {1,...,n},e,I) wheree is the required

crease when the current domains get closer to the global, o qision of domains. All other calls after the bisection of

fixed-point. In other words, the value gf must decrease

the domain of the variabley, initialize the propagation with

when the widths of the last domains contractions decreaseomy the narrowing operators dependinglorThe function

(see Figure 2). A method for computing the valuegois
as follows: to associate to eakkrank narrowing operator

2This operation is efficiently implemented by memcpy().

Divide splits J;, (in practice the component of of greatest
width) in[ parts (in practice two or three parts) such that the
width of J, is greater tham andJ = J, U---U J,;. The



Table 4. The constraint solving algorithm. Table 5. Comparison between box consis-

. tency algorithms (times in seconds).
Bisect (A : set of BGb-narrowing operators; y & ( )

S : set of indices of variables;
e:RY; I:1I": setofl”

begin Problem v BC3 BCy BCys BC,
J:=BC, (N, {nar € V| 3k € S A nar depends ok}, I) Broyden 10 18 07 02 029
if J =@ or width(J) < e then return {J} 20 42 15 04 0314
else 40 10.2 35 0.9 0.7 14
(k,J1,...,J;) :=Divide (J,¢) 80 255 87 2.0 1.8 14
return Bisect (N, {k},e,J1)U---U 160 67.1 234 5.1 4.4 15
Bisect (N, {k}, &, J)) 320 190.2 812 147 12615

endif Cosnard 10 20 06 0.2 0.120
end 20 135 25 0.9 0.5 27

40 102.2 12.7 4.6 2935
80 950.5 80.1 29.8 18.651
Griewank 2 5.0 45 1.8 25 2

result is a set of vectors of domains containing the solution Kearfott 4 53 3.1 2.3 21 2
set of the initial constraint system. i2x10 10 1.0 0.2 0.2 0.2 5
In practice, there exists some problems whose solving Powell 4 55 0.2 0.2 0.1 55

requires many bisections compared to the domains con-

tractions computed by constraint propagation. In this case

the propagation algorithm must be able to efficiently detect ] )

when the input domains given by the bisection algorithm Thev-dimensional problem “Cosnard corresponds to the

are a fixed-point of the narrowing operators. Moré-Cosnard equations resulting from the discretization of
a nonlinear integral equation:

5. Experimental Results T+ S[(1—t5) E;“:l ti(z+t;+ 173+

tr E;'):k—&-l(l —t;)(z; +1;+1)*] =0
The constraint solving algorithm has been tested on 1<k<v tj=jh h=1/(v+1) z; € [~4,5]
some examples from numerical analysis and CLP(Intervals) ST ! ’

benchmarks [14, 5]. The input set of narrowing opera- Constraint propagation using Béharrowing operators is
tors is computed from the natural interval extensions of the gpje to compute the best possible approximations for the so-
user’s constraints. Table 5 presents the computational re{utions of these two problems (bisection is useless). Their
sults obtained on a Sun UltraSparc 2 (166 MHz). Figures scalability permits illustrating the behaviours of the differ-
in columns are the computation times for different propaga- ent algorithms when the dimension increases. In particular
tion algorithms:BC3 andBC,, for the corresponding algo-  the time growth is almost linear for the Broyden problem
rithms, BC, for BC,, where the value ap is alway<0.0 (i.e.  and quadratic for the Cosnard problem. Benchmark “i2” is
BC,, using BC-narrowing operators and the new propaga- aiso a problem from interval analysis. The other problems
tion strategy based on the intensification of some operators)(u(;riewank", “Kearfott”, “Powell”) are used since the com-

andBC, /s for BC, where the value op is always0.125. putation of the solutions requires bisection (the precision
The results oBC3, BC, andBC,, are a fixed-point (com- s set to10~8).
putation of box consistency), whiC, s may stop before The comparison oB8C3 and BC, which use the same

the computation of a fixed-point when all the distances be- harrowing operators permits exhibiting the efficiency of the
tween the interval functions’ quasi-zeros and the bounds ofpew propagation strategy. The results for Broyden indicate
domains are smaller than125. The last column indicates  thatgc, is twice faster whatever the dimension is. The con-

the gain of8C,, with respect tC3. . stant improvement factor comes from the problem regular-
_Problem “Broyden” is the Broyden-Banded functions ity: a constant number of narrowing operators is selected
with v variables: and their costs are almost the same due to the smoothness

) of constraint expressions. This factor increases with the di-
2p(2+50%) + 1= Y jep, wi(L+25) =0 mension for Cosnard (3 for 10 variables, and more than 10
1<k<v  x; €[-108,+108) for 80 variables) since the constraint expressions become
Je=1{jlj#kmax(l,i —5) < j < min(v,i + 1)} more complex when the dimension increases.



The comparison 0oBC, andBC,,s shows the need for

implementing box consistency in order to prevent some
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