
Universally Quantified Interval Constraints

Frédéric Benhamou and Frédéric Goualard

Institut de Recherche en Informatique de Nantes
2, rue de la Houssinière, B.P. 92208, F-44322 Nantes Cedex 3

{benhamou,goualard}@irin.univ-nantes.fr

Abstract. Non-linear real constraint systems with universally and/or
existentially quantified variables often need be solved in such contexts as
control design or sensor planning. To date, these systems are mostly han-
dled by computing a quantifier-free equivalent form by means of Cylindri-
cal Algebraic Decomposition (CAD). However, CAD restricts its input to
be conjunctions and disjunctions of polynomial constraints with rational
coefficients, while some applications such as camera control involve sys-
tems with arbitrary forms where time is the only universally quantified
variable. In this paper, the handling of universally quantified variables is
first related to the computation of inner-approximation of real relations.
Algorithms for solving non-linear real constraint systems with univer-
sally quantified variables are then presented along with the theoretical
framework on inner-approximation of relations supporting them. These
algorithms are based on the computation of outer-approximations of the
solution set of the negation of involved constraints. An application to
the devising of a declarative modeller for expressing camera motion us-
ing a cinematic language is sketched, and results from a prototype are
presented.

1 Introduction

Interval constraint-based solvers such as clp(BNR) [8], ILOG Solver [18], and Nu-
merica [24] have been shown to be efficient tools for solving some challenging
non-linear constraint systems in various application areas (e.g. robotics, chem-
istry [16], or electronics [19]). Relying on interval arithmetic [17], these tools
guarantee completeness (all solutions in the input are retained), and permit iso-
lating punctual solutions with an “arbitrary” accuracy. Taking as input a con-
straint system and a Cartesian product of domains (intervals) for the variables
occurring in the constraints, their output is a set So of boxes approximating each
solution contained in the input box.

However, soundness is not guaranteed while it is sometimes a strong re-
quirement. Consider, for instance, a civil engineering problem [20] such as floor
design where retaining non-solution points may lead to a physically unfeasible
structure. As pointed out by Ward et al. [25] and Shary [23], one may expect
different properties from the boxes composing So depending on the problem at
hand, namely: every element in any box is a solution, or there exists at least

R. Dechter (Ed.): CP 2000, LNCS 1894, pp. 67–82, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

68 Frédéric Benhamou and Frédéric Goualard

one solution in each box. The foregoing solvers ensure only, at best, the second
property.

Furthermore, problems originating from camera control [12], sensor plan-
ning [1], and control design [2], not only require the output boxes to contain
only solution points, but also that some input variables be universally quanti-
fied.

To date, constraint systems with universally/existentially quantified variables
have mainly be handled by symbolic methods, among which one may single out
Cylindrical Algebraic Decomposition (CAD) by Collins [11]. CAD is quite a
powerful method since it permits handling more than one quantified variable for
disjunctions/conjunctions of constraints. However, it has strong requirements
on the form of the constraints it processes since they are limited to polynomial
constraints. As far as camera control is concerned though, only one quanti-
fied variable—time—needs to be dealt with for conjunctions of (not necessarily
polynomial) constraints. Consequently, there is room for a tailored algorithm to
specifically solve temporal constraints.

This paper first presents an algorithm whose output is a set of sound boxes
of variable domains for some constraint system. Soundness is achieved by com-
puting inner approximations of the underlying real relations, using box con-
sistency [7]—a well-known, efficient, local consistency—on the negation of the
involved constraints. An algorithm is then applied to the solving of constraint
systems where one variable is universally quantified. An application to tempo-
ral constraints arising from camera motion modelling (virtual cameraman prob-
lem [14]) is sketched: following the work of Jardillier and Languénou, a proto-
type for a declarative modeller has been devised, which should eventually allow a
non-technician user to control the positioning of a camera by means of cinematic
specifications of a shot (short “scene”).

The outline of the paper is as follows: Section 2 introduces notations and some
basic notions related to interval constraint solving: interval representation of real
quantities, approximation of relations by supersets, and local consistencies are
surveyed. Next, the notion of inner approximation of real relations is formally
introduced in Section 3, and then related to the solving of constraints contain-
ing occurrences of universally quantified variables; the corresponding algorithms
are given and compared to a previous approach by Jardillier and Languénou.
The prototype of a declarative modeller for camera positioning is presented in
Section 4; heuristics for speeding-up computation, along with results on some
benchmarks are then given. Finally, Section 5 compares our approach with pre-
vious works in the field, and discusses directions for future researches.

2 Interval Constraint Solving

Finite representation of numbers by computers prevents them solving accurately
real constraints. Interval constraint solving relies on interval arithmetic [17]
to compute verified approximate solutions of real constraint systems. Under-
lying real relations may be approximated by considering one of their computer-

Universally Quantified Interval Constraints 69

representable superset or subset. This section presents the basics related to the
approximation of real relations the conservative way. Safe approximation by a
subset is deferred until the next section.

The organization of the section is as follows: the shift from reals to bounds
(numbers together with a “bracket”) is first described; the notion of open and
closed interval relying on bounds is then introduced, followed by a presentation of
the way real relations are approximated and interval constraint systems solved.

The reader is referred to the above-mentionned references for a thorough pre-
sentation of interval arithmetic. A great part of what is exposed in the following
is drawn from [8] and [4]. Proofs not given here may be found in these papers.

2.1 Approximation of a Relation

Solving real constraints requires the ability to represent the underlying relations.
The approximate representation by a superset (Cartesian product of intervals)
is described in the following.

From Reals to Floating-Point Intervals Let R be the set of reals and
F ⊂ R a finite subset of reals corresponding to floating-point numbers. Sets
R and F are compactified in the usual way by using symbols −∞ and +∞. Let
F
∞ = F ∪ {−∞,+∞}. Hereafter, r and s (resp. g and h), possibly subscripted,

are assumed to be elements of R (resp. F
∞).

Four new symbols (brackets) are introduced: let L = {(, [} and U = {),]}
be respectively the set of left and right brackets. Let B = L ∪ U be the set of
brackets totally ordered by the ordering ≺ defined as follows [9]:) ≺ [≺] ≺ (.

The set of floating-point bounds F
� is defined from B and F as follows:

F
� = F

� ∪ F
� where

{
F

� = (F× L ∪ {〈 −∞, (〉, 〈+∞, (〉})
F

� = (F× U ∪ {〈 −∞,) 〉, 〈+∞,) 〉})
Real bounds set R

� is defined likewise. Given a bound β = 〈 x, α 〉, let β|v = x
and β|b = α. Floating-point bounds are totally ordered by the ordering �:
∀β1 = 〈 g, α1 〉, β2 = 〈 h, α2 〉 ∈ F

� : β1 � β2 ⇐⇒ (g < h)∨ (g = h ∧α1 ≺ α2). A
similar ordering may be defined over R

�.
For each g ∈ F

∞, let g+ be the smallest element in F
∞ greater than g, and

g− the greatest element in F
∞ smaller than g (with the IEEE 754 conventions:

(+∞)+ = +∞, (−∞)− = −∞, (+∞)− = max(F), (−∞)+ = min(F)).
Bounds are used to construct intervals as follows: let I◦ = F

� × F
� be the

set of closed/open floating-point intervals (henceforth referred to intervals), with
the following notations used as shorthands:

(〈 g, [〉, 〈 h,] 〉) ≡ [g .. h] ≡ {r ∈ R |
g � r � h}, (〈 g, [〉, 〈 h,) 〉) ≡ [g .. h) ≡ {r ∈ R | g � r < h}, and so on.

For the sake of simplicity, the empty set ∅ is uniquely represented in I◦ by
the interval (+∞ ..−∞). Let I� ⊂ I◦ be the set of closed intervals, together with
the two special intervals: (−∞ .. +∞) and (+∞ ..−∞).

In the rest of the paper, interval quantities are written uppercase, reals or
floats are sans-serif lowercase, and vectors are in boldface. A Cartesian product

70 Frédéric Benhamou and Frédéric Goualard

of n intervals B = I1×· · ·× In is called a box. A non-empty interval I = (β1, β2)
with β1 ∈ F

� and β2 ∈ F
� is said canonical whenever β2|v � (β1|v)+. An n-ary

box B is canonical whenever the intervals I1, . . . , In are canonical. Given an
interval I = (β1, β2), let inf(I) = β1|v and sup(I) = β2|v. Given a variable v, an
interval I, and boxes B and D, let DomB(v) ∈ I◦ be the domain of v in box B,
B|k = Ik, the k-th projection of B, and B|v,D (resp. B|v,I) the box obtained
by replacing v’s domain in box B by its domain in box D (resp. by interval I);
given an interval J , let B|Ik,J be the box I1 × · · · × Ik−1 × J × Ik+1 × · · · × In.
Given boxes B and D, let B \ D ⊆ P(In

◦) be the set of boxes obtained from
complementing B from D.

Approximating a Relation by a Box This section introduces some more
notations on constraints, sets, and relations, then presents the notion of
outer approximation, viz. the approximation of a real relation by a computer-
representable superset.

Let VR = {x1, x2, . . . } (resp. VI◦ = {X1, X2, . . . }) be a set of variables
taking their values over R (resp. I◦). Given Σ1 = 〈 R,F1,R1 〉 a structure, a real
constraint is defined as a first-order formula built from Σ1 and VR. An interval
constraint is defined in the same way over the structure Σ2 = 〈 I◦,F2,R2 〉 and
VI◦ .

Without loss of generality, we take n as the default arity of a function,
a constraint, or a relation, and k an integer belonging to the set {1, . . . , n}.
Sets are written in uppercase calligraphic letters. The power set of a set S is
written P(S). Given a real constraint c(x1, . . . , xn) (resp. an interval constraint
C(X1, . . . , Xn)), ρc (resp. ρC) denotes the underlying relation—that is, the sub-
space made of “points” verifying the constraint. For the sake of readability, the
relation ρci for some constraint ci is written ρi whenever that notation is non-
ambiguous. Given an n-ary constraint c, let c be ¬c, implying that ρc = R

n \ ρc.
A real relation ρ may be conservatively approximated by the smallest (w.r.t.

set inclusion) union of boxes Union◦(ρ) (resp. the smallest box, Outer◦(ρ)) con-
taining it. These operators have closed counterparts Union�(ρ) and Outer�(ρ).
Outer◦(ρ) is a coarser approximation than Union◦(ρ) but is far more used, it
being computationally easier to obtain.

Given a function f defined over reals, an interval extension of f is a func-
tion F defined over intervals as follows: ∀I1, . . . ,∀In ∈ I◦ : r1 ∈ I1, . . . , rn ∈
In ⇒ f(r1, . . . , rn) ∈ F (I1, . . . , In). An interval extension of a real constraint c
is an interval constraint C defined by: ∀I1, . . . ,∀In ∈ I◦ : ∃a1 ∈ I1 ∧ · · · ∧ ∃an ∈
In ∧ c(a1, . . . , an) ⇒ C(I1, . . . , In).

The projection of an interval constraint C(X1, . . . , Xn) w.r.t. an index
k ∈ {1, . . . , n} and a box B = I1 × · · · × In, written C|k,B, is defined as the
univariate interval constraint obtained by replacing all variables Xj but Xk with
the corresponding intervals Ij .

Universally Quantified Interval Constraints 71

2.2 Local Consistencies

Discarding all inconsistent values from a box of variable domains is intractable
when the constraints are real ones (consider, for instance, the constraint sin(x) =
1, x ∈ [0 .. 2]). Consequently, weak consistencies have been devised among which
one may cite hull consistency [4] and box consistency [7]. Both consistencies
permit narrowing variable domains to (hopefully) smaller domains, preserving
the solution set. Since box consistency alone is used as a basis for the algorithms
to be introduced in Section 3, it is the only one to be presented thereunder.

Contracting Operators Depending on the considered consistency, one may
define different contracting operators for a constraint. In this section, box con-
sistency is first formally presented. Therefrom, an operator based on it is given.
The definition for box consistency given below is an instance of the extended one
stated by Benhamou et al. [5] that slightly differs from the original definition [7]
in that it is parameterized by approximation operators.

Definition 1 (Box consistency [5]) Let c be a real constraint, C an interval
extension for c, and B = I1 × · · · × In a box. The constraint c is said box-
consistent w.r.t. B if and only if:

∀k ∈ {1, . . . , n} : Ik = Outer◦(Ik ∩ {r ∈ R | Outer◦({r}) ∈ ρC|k,B
})

Intuitively, a constraint c is box-consistent w.r.t. a box B when each projec-
tion Ij , j ∈ {1, . . . , n}, of B is the smallest interval containing all the elements
that cannot be distinguished from solutions of C|k,B due to the inherently limited
precision of the computation with floating-point numbers.

Using box consistency to narrow down the variable domains of a constraint
leads to the notion of outer-box contracting operator :

Definition 2 (Outer-box contracting operator) Given an n-ary con-
straint c and a box B, an outer-box contracting operator OCbc : I

n◦ −→ I
n◦ for c

is defined by:

OCbc(B) = max{B′ | B′ ⊆ B

and c is box-consistent w.r.t. k ∈ {1, . . . , n} and B′}

Proposition 1 (Completeness of OCb) Given a constraint c, the following
relation does hold for any box B: (B ∩ ρc) ⊆ OCbc(B).

The consistency and the associated contracting operator considered so far are
such that completeness is guaranteed (no solution is lost during the narrowing
process). Devising operators ensuring soundness of the results is the topic of the
next section.

72 Frédéric Benhamou and Frédéric Goualard

3 Solving Constraints with Universally Quantified
Variables

Constraints arising from the translation of some desired properties for camera
control and pathplanning are usually of the form: given Iv, find x1, . . . , xn such
that:

∀v ∈ Iv : c(x1, . . . , xn, v) (1)

From a practical standpoint, Eq. (1) must be translated into a stronger statement
in order to allow picking out values from the variable (interval) domains, viz. :
given Iv, find intervals I1, . . . , In such that:

∀x1 . . . ∀xn∀v : v ∈ Iv ∧ x1 ∈ I1 ∧ · · · ∧ xn ∈ In ⇒ c(x1, . . . , xn, v)

The computed boxes need then be included into the relation ρc. More gen-
erally, solving constraints with an explicitly universally quantified variable boils
down in practice to computing a (subset of) the “inner approximation” of real
relations.

Several definitions for the inner-approximation of a real relation exist in the
literature, depending on the intended application. Given an n-ary relation ρ, one
may single out at least the two following definitions for an inner approximation
Inner(ρ) of ρ:

1. Def. A. Inner(ρ) = B1, where B1 ∈ {B ∈ I
n
◦ | B ⊆ ρ} (an inner-

approximation is any box included in the relation) [15,3];
2. Def. B. Inner(ρ) = B1, where B1 ∈ {B = I1 × · · · × In | B ⊆ ρ ∧ ∀j ∈
{1, . . . , n}, ∀I ′j ⊇ Ij : B|Ij ,I′

j
⊆ ρ ⇒ I ′j = Ij} (an inner-approximation is a

box included in the relation that cannot be extended in any direction without
containing non-solution points) [23].

In this paper, we consider the following stronger definition for the inner-
approximation of a relation :

– Def. C. Inner(ρ) = {r ∈ R
n | Outer◦({r}) ⊆ ρ} (the inner-approximation

contains all the elements whose enclosing box is included in the relation).

Definitions A and B imply that disconnected relations are only very partially
represented by only one box, a drawback that is avoided when using Def. C.

This section first introduces the notion of inner approximation of a relation
ρ (that is the approximation by a computable subset of ρ) based on Def. C. Con-
tracting operators to compute this approximation are then defined. Therefrom,
an algorithm due to Jardillier and Languénou [14] for solving constraint systems
with one universally quantified variable is presented. A new approach based on
the use of the complete but unsound operators presented in Section 2.2 for the
negation of the involved constraints is then described, and compared to the one
of Jardillier and Languénou.

Due to lack of space, the reader is referred to the associated research report [6]
for the proofs of the propositions to be stated below.

Universally Quantified Interval Constraints 73

3.1 Computing Inner Sets

From Def. C above, an inner-approximation operator may be defined as follows:

Definition 3 (Inner approximation operator) Given an n-ary relation ρ,
an inner-approximation operator Inner◦ : R

n → R
n is defined by:

Inner◦(ρ) = {r ∈ R
n | Outer◦({r}) ⊆ ρ}

The Inner approximation operator enjoys the following properties:

Proposition 2 (Inner approximation operator properties) The Inner ope-
rator is contracting, monotone, idempotent, and distributive w.r.t. the union and
intersection of subsets of R

n.

Inner Contracting Operators The narrowing of variable domains occurring
in a constraint is done in the same way as in the outer-approximation case: an
inner-contracting operator associated to each constraint discards from the initial
box all the inconsistent values along with some consistent values. The result is
a set of boxes.

Definition 4 (Inner-contracting operator) Let c be an n-ary constraint.
An inner-contracting operator for c is a function ICc : I

n◦ → P(In◦) verifying:

∀B : ICc(B) ⊆ Inner◦(B ∩ ρc)

Proposition 3 (Soundness of IC) Given a constraint c and an inner-contrac-
ting operator ICc for c, we have: ∀B : ICc(B) ⊆ (B ∩ ρc).

Inner-contracting operators with stronger properties (computation of the
greatest representable set included in a relation) may also be defined. These
operators are optimal in the sense that ICc(B) = Inner◦(B ∩ ρc) for any box B.

Devising an inner-contracting operator for a constraint is not as easy as
devising an outer-contracting operator since interval techniques only permit to
enforce some partial consistencies, that is, discarded values are guaranteed to be
non-solutions while no information is known about those that are kept. However,
it will be shown in Section 3.2 that outer-contracting operators may be used to
obtain inner approximations provided they are applied onto the negation of the
considered constraints.

The next section addresses the problem of solving constraint systems where
each constraint possesses an occurrence of a universally quantified variable v.
The first approach to be described, due to Jardillier and Languénou [14], relies
on an evaluation/bisection process to compute an inner-approximation of the
underlying relations considering v as a given constant domain.

74 Frédéric Benhamou and Frédéric Goualard

3.2 Universally Quantified Variables

Given an (n+1)-ary constraint c(x1, . . . , xn, xv) and a box B = I1×· · ·×In×Iv,
applying an inner-contracting operator ICc to B outputs a set of boxes U =
{B′

1, . . . ,B
′
p} where each B′

j = D1× · · · ×Dn ×Dv is a sub-box of B such that:
∀r1 ∈ D1, . . . ,∀rn ∈ Dn, ∀rv ∈ Dv : c(r1, . . . , rn, rv) does hold.

Therefore, solving a constraint of the form ∀v ∈ Iv : c(x1, . . . , xn, v) boils
down to retaining only boxes B′ = D1× · · · ×Dn ×Dv of U such that Dv = Iv.

In this paper, we address the case of only one explicitly quantified variable.
Given a constraint c and a variable v occurring in c, the underlying relation for
the constraint ∀v ∈ Iv : c is written ρ̃c,v,Iv . When the names of the variable and
its domain are non-ambiguous, the notation is shortened into ρ̃c.

The Evaluation Approach In order to tighten a box B of variable domains
for a problem of the form ∀v ∈ Iv : c1 ∧ · · · ∧ cm, Jardillier and Languénou [14],
compute an inner approximation of ρ1 ∩ · · · ∩ ρm by decomposing the initial
domain Iv of v into canonical intervals I1

v , . . . ,Ip
v , and testing with a function of

global satisfaction GlobSat whether c1∧· · ·∧cm does hold for the boxes I1×· · ·×
In×I1

v , . . . , I1×· · ·×In×Ip
v . These evaluations give results in a three-valued logic

(true, false, unknown). Boxes labeled true contain only solutions, boxes labeled
false contain no solution at all, and boxes labeled unknown are recursively split
and re-tested until they may be asserted true or false, or canonicity is reached.
Retained boxes are those verifying:

∀j ∈ {1, . . . , p} : eval{c1∧···∧cm}(I1 × · · · × In × Ij
v) = true (2)

In this paper, we will call this algorithm EIA4. This process is, in some way, re-
lated to the work of Sam-Haroud and Faltings [21] where true, false, or unknown
boxes are organized into 2k-trees to ease the computation of global consistencies.

Equation (2) implies that each retained box is included in the inner-approxi-
mation of ρc. Consequently, the property verified by each of them is the strong
statement: ∀x1 . . . ∀xn∀v : v ∈ Iv ∧ x1 ∈ I1 ∧ · · · ∧ xn ∈ In ⇒ c1 ∧ · · · ∧ cm.

Inner Approximation by Negation This section presents algorithms narrow-
ing variable domains and handling one universally quantified variable by reason-
ing on the negation of the considered constraints. The algorithms described here-
after implement inner-contracting operators for every n-ary constraint c by using
OCbc. Since values discarded by this operator are guaranteed to be non-solution
for c—by completeness of OCb (see Prop. 1)—, they are guaranteed solutions
for c. Formally, a statement of the form ∀v ∈ Iv : c(x1, . . . , xn, v) is replaced by
¬∃v : v ∈ Iv ∧ ¬c(x1, . . . , xn, v) where Statement ∃v : v ∈ Iv ∧ ¬c(x1, . . . , xn, v)
can be handled by the OCb operator. More generally, a constraint system of
the form ∀v ∈ I1

v : c1(x1, . . . , xn, v) ∧ · · · ∧ ∀v ∈ Im
v : cm(x1, . . . , xn, v) may be

translated into the system [¬∃v : v ∈ I1
v ∧ ¬c1(x1, . . . , xn, v)] ∧ · · · ∧ [¬∃v : v ∈

Im
v ∧ ¬cm(x1, . . . , xn, v)] where conjunctions at the highest level have been pre-

served.

Universally Quantified Interval Constraints 75

Algorithm ICAb3, based on box consistency, to solve one constraint with a
universally quantified variable is first presented below (see Alg. 1). Algorithm
ICAb5 that handles several constraints is then described.

Proposition 4 (Correctness of ICAb3) Let c be a constraint, ρ its underlying
relation, v a variable, and B a box. Then, Alg. ICAb3 implements an inner-
contracting operator for ∀v ∈ DomB(v) : c.

Remark 1 One may note that Line 8 in Alg. 1 may be replaced by “(D1,D2) ←
Splitv(D),” provided that the initial domain I0

v of Variable v is passed as a pa-
rameter of ICAb3; Line 6 would then become: “W ← B \D|v,I0

v
.”

Alg. 1. ICAb3c – Inner contracting algorithm for ∀v ∈ DomB(v) : c

1 ICAb3c(in : B ∈ In
◦, v ∈ VR; out : W ∈ P(In

◦))
2 begin
3 B′ ← OCbc(B)
4 if (DomB′(v) = DomB(v)) then
5 D ← OCbc(B

′)
6 W← B′ \D|v,B′

7 if (D
= ? and ¬Canonicalv(D)) then
8 (D1, D2) ← Splitv(D|v,B′)
9 W ← W ∪ ICAb3c(D1, v) ∪ ICAb3c(D2, v)

10 endif
11 return (W)
12 else
13 return (?)
14 end

Function Splitv splits in two intervals one of the non-canonical domains of D. Domain DomD(v) is
never considered for splitting. In the same way, Canonicalv tests canonicity for all domains but the one
of variable v.

It is also worthwhile noting that lines 3 and 4 in Alg. ICAb3 are only present
to speed up computation: box consistency is first tested for the input box B; if
the domain of the universally quantified variable is narrowed at this stage, it is
no longer necessary to continue further since it implies that there is no solution
to the constraint ∀v ∈ DomB(v) : c.

Handling constraint systems of the form:

(∀v ∈ I1 : c1) ∧ · · · ∧ (∀v ∈ Im : cm)

is done by Alg. ICAb5 (Alg. 2) as follows: each constraint of the system is con-
sidered in turn together with the sets of elements verifying all the considered
constraints theretofore; the point concerning Alg. ICAb5 lies in that each con-
straint needs only be invoked once, since after having been considered for the
first time, the elements remaining in the variable domains are all solutions of

76 Frédéric Benhamou and Frédéric Goualard

the constraint. As a consequence, narrowing some domain later does not require
additional work.

Proposition 5 (Soundness of ICAb5) Let S = {(c1, I1), . . . , (cm, Im)} be a
set of pairs made of a constraint and a domain. Given B a box and v a variable,
we have:

ICAb5(S, {B}, v) ⊆ Inner◦(B ∩ ρ̃1 ∩ · · · ∩ ρ̃m)

Comparison of Evaluation vs. Negation Approaches

Proposition 6 (EIA4 vs. ICAb5) Let v be a variable, B a box, Iv, the domain
of v in B, and g = inf(Iv). Given S = {(c1, Iv), . . . , (cm, Iv)}, the following
property does hold:

EIA4({c1, . . . , cm},B, v, g) ⊆ ICAb5(S, {B}, v)

Alg. 2. ICAb5 – Inner contracting algorithm for ∀v ∈ I1 : c1∧· · ·∧∀v ∈ Im : cm

1 ICAb5(in : S = {(c1, I
1), . . . , (cm, Im)},A ∈ P(In

◦), v ∈ VR; out : W ∈ P(In
◦))

2 begin
3 if (S
= ?) then
4 B ← ?

5 foreach D ∈ A do
7 B ← B ∪ ICAb3c1(D|v,I1 , v,)
9 endforeach

10 if (B = ?) then
11 return (?)
12 else
13 return (ICA4(S \ {(c1, I

1)},B, v))
14 endif
15 else
16 return (A)
17 endif
18 end

Proposition 6 ensures us that decomposing the domain of the universally
quantified variable into canonical intervals does not enhance the precision of the
computed inner set.

Let ξj be the number of floating-point numbers in Interval Ij , and ξ = max
j

ξj .

For a constraint system composed of m n-ary constraints, the number of calls
to GlobSat in EIA4 in the worst case is:

Γ = mn
n∏

i=1

(2ξi − 3) = O((mξ)n)

Universally Quantified Interval Constraints 77

In the worst case, the number of calls to Alg. OCb in Alg. ICAb5 is also
in O((mξ)n). However, this evaluation is very pessimistic and does not reflect
accurately what happens in practice: as it will be shown in Section 4.3, the filter-
ing induced by Alg. ICAb5 when considering each constraint in turn drastically
reduces the number of boxes to consider later, thus speeding up the computation.

Restricting the general framework: correctness In the sequel of this paper, the
results presented so far are instantiated for a limited class of constraints, namely
inequalities (constraints of the form: f(x1, . . . , xn)%0 with % ∈ {�,�}. Moreover,
only closed intervals are used. Nevertheless, soundness of the algorithms is pre-
served since computed outer-approximations for the negation of the constraints
may only be greater than the one computed on I◦. Operator GlobSat used in
Alg. EIA4 is implemented by a straight evaluation over intervals of f(x1, . . . , xn)
to determine whether it is greater or equal (resp. lower or equal) to zero.

4 Experimental Results

The algorithms presented in Section 3 have been validated in the context of
a high-level declarative modeller for camera motion. In this section, the bench-
marks used to test the prototype are first described; Alg. ICAb5 is then compared
with Alg. EIA4 both for speed and for the ability to provide as soon as possible
the user with a representative sample of all solutions.

4.1 Benchmark Description

In the sequel, every benchmark is parameterized by both the number of variables
(not counting time t) and the number of constraints to solve.

School Problem3,1 [14] is a benchmark corresponding to finding all parabolas
lying above a line:

∀t ∈ [0 .. 2] : at2 + bt + c � 2t + 1 with a ∈ [0 .. 1], b ∈ [0 .. 1], c ∈ [0 .. 1]

Benchmark School Problem3,2 is an inconsistent variant:

∀t ∈ [0 .. 2] :
{
at2 + bt + c � 2t + 1
at2 + bt + c � 2t

with same domains for a, b, and c.
Benchmark Flying Saucer4,1 boils down to finding all pairs of points such

that the distance between the flying saucer and the line linking both points is
above a given value at any time in a given interval:

√
(x1 + u(x2 − x1)− xt

3)2 + (y1 + u(y2 − y1)− yt
3)2 � d

with u = (xt
3−x1)(x2−x1)+(yt

3−y1)(y2−y1)/ ‖ P2 − P1 ‖2, where P1 = (x1, y1)
and P2 = (x2, y2) are the unknowns, P t

3 = (xt
3, y

t
3) the coordinates of the flying

78 Frédéric Benhamou and Frédéric Goualard

saucer at time t, and d the minimal distance between the flying saucer and the
line (P1, P2).

Benchmark Simple Circle is also a collision problem: given B a point moving
along a circling path, find all points A such that the distance between A and B
is always greater than a given value. Benchmarks Simple Circle2,2 and Simple
Circle2,3 are instances of the same problems with respectively 2 and 3 points
moving round in circles. For only one circling point, we have:

∀t ∈ [−π .. π] :√
(r1 sin t− x)2 + (r1 cos t− y)2 � d1

x ∈ [−5 .. 5]
y ∈ [−5 .. 5]
d1 = 0.5

where d1 is the minimal required distance between A and B, and r1 = 2.5 is
the radius of B’s circling path.

Benchmark Projection3,4 checks whether a moving object projects itself into
a frame on the screen for a given time. The static camera has three degrees
of freedom: xc

t , yc
t , and θc

t (horizontal orientation). Given xo
t , yo

t , and zo
t the

coordinates of the object’s path at time t, and xc
t , y

c
t , zc

t , φc
t , θc

t , ψ
c
t , γc

t the
parameters for the camera, we have:

x′t = −(xo
t − xc

t) sin θc
t + (yo

t − yc
t) cos θc

t

y′t = −(xo
t − xc

t) cos θc
t sinφc

t + (yo
t − yc

t) sinφc
t sin θc

t + (zo
t − zc

t) cosφc
t

z′t = −(xo
t − xc

t) cos θc
t cosφc

t + (yo
t − yc

t) sin θc
t cosφc

t + (zo
t − zc

t) sinφc
t

�xf
t � x′t/(z

′
t/γ

c
t) �xf

t � x′t/(z
′
t/γ

c
t)

�yf
t � y′t/(z

′
t/γ

c
t) �yf

t � y′t/(z
′
t/γ

c
t)

where �xf
t (resp. �yf

t) is the abscissa of the left bound (resp. the ordinate
of the right bound) of the frame, t ∈ [0 .. 20], xc ∈ [−3 .. 3], yc ∈ [−3 .. 3], zc = 2,
φc ∈ [−0.5 .. 0.5], θc = 0, and γt

c = 0.8.

4.2 Improving Computation

Solvers such as Numerica usually isolate solutions with variable domains around
10−8 or 10−16 in width. By contrast, the applications this paper focuses on are
less demanding since the resulting variable domains are used in the context of
a display screen, a “low resolution” device. In practice, one can consider that a
reasonable threshold ε for the splitting process is some value lower or equal to
10−3.

One of the drawbacks of Alg. EIA4 [14] is that successive output solutions
are very similar, while it is of importance to be able to provide the user with a
representative sample of solutions as soon as possible.

Tackling this problem using Alg. ICAb5 is done as follows: given a constraint
system of the form ∀v ∈ Iv : c1 ∧ · · · ∧ cm and a Cartesian product of domains
B = I1 × · · · × In × Iv, the solving process has two degrees of freedom, viz. the
selection of the next constraint to consider, and the selection of the next variable
to split. Figure 1 presents the differences with regard to the order of generation of
solutions for Simple Circle2,2 for two strategies concerning the variable splitting

Universally Quantified Interval Constraints 79

order: depth-first, where each constraint is considered in turn, and each domain is
split to the threshold splitting limit; and semi-depth-first where each constraint
is considered in turn, but each variable is split only once and put at the end of
the domain queue.

Depth-first algorithm Semi-depth-first algorithm

58040 ms

O ms

40000ms

20000 ms

Fig. 1. Depth-first vs. semi-depth first

As one may see, the semi-depth-first algorithm computes consecutive solu-
tions spread over all the search space, while the depth-first algorithm computes
solutions downwards and from “right” to “left”.

4.3 Comparing EIA4 and ICAb5

Algorithms EIA4 and ICAb5 provide different sets of solutions for the same prob-
lem. Consequently, a direct comparison of their performances is quite difficult.
Moreover, the actual implementation of EIA4 differs from its ideal description
since it uses a splitting threshold ω for the domain of the universally quantified
variable v instead of checking consistency by eventually reaching canonicity for
the samples of the domain Iv.

Tables 1 and 2 compare algorithms EIA4 and ICAb4 from the speed point
of view for computing the first solution (vs. all solutions). Times are given in
seconds on a SUN UltraSparc 166 MHz running Solaris 2.5.

Setting ω and ε to the same value leads to nearly the same solution sets for
both algorithms EIA4 and ICAb5.

5 Conclusion

Unlike the methods used to deal with universally quantified variables described
in [13], the algorithms presented in this paper are purely numerical ones (except
for the negation of constraints). Since they rely on “traditional” techniques used
by most of the interval constraint-based solvers, they may benefit from the active
researches led to speed up these tools. What is more, they are applicable to

80 Frédéric Benhamou and Frédéric Goualard

Table 1. EIA4(ω) vs. ICAb5 — First solution

Benchmark EIA4(ω) ICAb5 EIA4(ω)/ICAb5
Projection3,8(ε = 10−1) 0.2 0.17 1.18
Projection3,8(ε = 10−2) 38.59 0.16 241.19
Projection3,8(ε = 10−3) > 600 0.16 > 3750.00
Projection3,4(ε = 10−2) 53.12 0.12 442.67
Projection3,4(ε = 10−3) > 600 0.12 > 5000.00
School Problem3,1(ε = 10−2) 0.02 0.09 0.22
School Problem3,1(ε = 10−3) 1.58 0.09 17.56
Simple Circle2,2(ε = 10−2) 0.99 0.05 19.80
Simple Circle2,2(ε = 10−3) 20.86 0.05 417.20

Table 2. EIA4(ω) vs. ICAb5 — All solutions

Benchmark EIA4 ICAb5 EIA4/ICAb5

Projection3,5 783.03 68.83 11.38
Projection3,10 >9,000 3,634 > 2476.61
Projection5,5 >9,000 3,612 > 2491.69
School Problem3,1 156.02 12.72 12.27
Flying Saucer4,1 1,459.01 1,078.03 1.35
Simple Circle2,1 12,789.03 651.59 19.63
Simple Circle2,2 1,579.05 55.95 28.22

the large range of constraints for which an outer-contracting operator may be
devised. By contrast, CAD-based methods deal with polynomial constraints only.

However, constraints to be handled by our algorithm need be easily negated, a
requirement trivially met with inequalities but not with equalities. The handling
of equalities might be done as described by Sam-Haroud and Faltings [21,20] by
relaxing the constraint f = 0 into f = ±ε, thus replacing an equality by two
inequalities.

Despite the dramatic improvement of the new method described herein over
the one given by Jardillier and Languénou, handling of complex scenes with
many objects and a camera allowed to move along all its degrees of freedom in
a reasonable time is beyond reach for the moment. Nevertheless, a comforting
idea is that most of the traditional camera movements involve but few of the
degrees of freedom, thenceforth reducing the number of variables to consider.

Collavizza et al. [10] devised a scheme for computing inner-approximations
of the relation underlying a real constraint system: starting from a “seed” known
to be included in the relation, they expand the domain of the variables as much
as possible until obtaining a “maximal” subset of the inner-approximation (with
maximality to be understood in the sense of Shary [22]). A drawback of their
method lies in that they do not provide any means to compute the seed. An
interesting direction for research would be to try using our algorithm to quickly
isolate such a seed for each connected subset of the inner-approximation, then
resorting to their method to obtain maximal inner-approximations.

Universally Quantified Interval Constraints 81

Acknowledgements

Discussions with Éric Languénou, Marc Christie, and Laurent Granvilliers that
helped improving this paper are gratefully acknowledged. The research exposed
here was supported in part by a project of the French/Russian A. M. Liapunov
Institute.

References

1. S. Abrams and P. K. Alien. Computing camera viewpoints in an active robot work-
cell. Technical Report IBM Research Report: RC 20987, IBM Research Division,
1997. 68

2. B. D. O. Anderson, N. K. Bose, and E. I. Jury. Output feedback stabilization
and related problems – solution via decision methods. IEEE Trans. on Automatic
Control, AC-20(1), 1975. 68

3. J. Armengol, L. Travé-Massuyés, J. Veil, and M. Á. Sainz. Modal interval analysis
for error-bounded semiqualitative simulation. In 1r Congrés Català d’lntelligència
Artificial, pages 223-231, 1998. 72

4. F. Benhamou. Interval constraint logic programming. In A. Podelski, editor, Con-
straint programming: basics and trends, volume 910 of LNCS, pages 1-21. Springer-
Verlag, 1995. 69, 71

5. F. Benhamou, F. Goualard, L. Granvilliers, and J.-F. Puget. Revising hull and
box consistency. InProc. of the 16th Int. Conf. on Logic Programming (ICLP’99),
pages 230-244, Las Cruces, USA, 1999. The MIT Press. ISBN 0-262-54104-1. 71

6. F. Benhamou, F. Goualard, É. Languénou, and M. Christie. Universally quanti-
fied constraint solving: an application to camera control. Research Report 00.5,
Institut de Recherche en Informatique de Nantes, March 2000. Available at
http://www.sciences.univ-nantes.fr/irin/Vie/RR/indexGB.html. 72

7. F. Benhamou, D. McAllester, and P. Van Hentenryck. CLP(Intervals) revisited. In
Proc. of ILPS’94, pages 124-138. MIT Press, November 1994. 68, 71

8. F. Benhamou and W. J. Older. Applying interval arithmetic to real, integer and
boolean constraints. JLP, 32(1): 1-24, 1997. 67, 69

9. J. G. deary. Logical arithmetic. Future Generation Computing Systems, 2(2): 125-
149, 1987. 69

10. H. Collavizza, F. Delobel, and M. Rueher. Extending consistent domains of numeric
CSP. In Proc. of the 16th IJCAI, volume 1, pages 406-411, July 1999. 80

11. G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In Proc. of the 2nd GI Conf. Automata Theory and Formal Lan-
guages, volume 33 of LNCS, pages 134-183, Kaiserslauten, 1975. Springer. 68

12. S. M. Drucker. Intelligent Camera Control for Graphical Environments. PhD thesis,
MIT Media Lab, 1994. 68

13. H. Hong. Collision problems by an improved CAD-based quantifier elimination
algorithm. Technical Report 91-05, RISC-Linz, 1991. 79

14. F. Jardillier and E. Langienou. Screen-space constraints for camera movements:
the virtual cameraman. In N. Ferreira and M. Gobel, editors, Eurographics’98
proceedings, volume 17, pages 175-186. Blackwell Publishers, 1998. 68, 72, 73, 74,
77, 78

15. S. M. Markov. On directed interval arithmetic and its applications. JUCS, 1(7):514-
526, 1995. 72

82 Frédéric Benhamou and Frédéric Goualard

16. K. Meintjes and A. P. Morgan. Chemical equilibrium systems as numerical test
problems. ACM TOMS, 16(2):143-151, June 1990. 67

17. R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Clis, N. J., 1966. 67, 68
18. J.-F. Puget. A C ++ implementation of CLP. In Proc. of SPICIS’94, 1994. 67
19. J.-F. Puget and P. Van Hentenryck. A constraint satisfaction approach to a circuit

design problem. J. of Global Optimization, 13:75-93, 1998. 67
20. J. Sam. Constraint Consistency Techniques for Continuous Domains. Phd. thesis,

École polytechnique fédérale de Lausanne, 1995. 67, 80
21. J. Sam-Haroud and B. V. Fallings. Consistency techniques for continuous con-

straints. Constraints, 1:85-118, 1996. 74, 80
22. S. P. Shary. Algebraic solutions to interval linear equations and their applications.

In G. Alefeld and J. Herzberger, editors, Numerical Methods and Error Bounds,
proc. of the IMACS-GAMM Int. Symposium on Numerical Methods and Error
Bounds, pages 224-233. Akademie Verlag, July 1995. 80

23. S. P. Shary. Interval Gauss-Seidel method for generalized solution sets to interval
linear systems. In Proc. of MISC’99, pages 51-65, February 1999. 67, 72

24. P. Van Hentenryck, L. Michel, and Y. Deville. Numerica: A Modeling Language
for Global Optimization. The MIT Press, 1997. 67

25. A. C. Ward, T. Lozano-Bsrez, and W. P. Seering. Extending the constraint prop-
agation of intervals. InProc. of IJCAI’89, pages 1453-1458, 1989. 67

	Universally Quantified Interval Constraints
	Introduction
	Interval Constraint Solving
	Approximation of a Relation
	From Reals to Floating-Point Intervals
	Approximating a Relation by a Box

	Local Consistencies
	Contracting Operators

	Solving Constraints with Universally Quantified Variables
	Computing Inner Sets
	Inner Contracting Operators

	Universally Quantified Variables
	The Evaluation Approach
	Inner Approximation by Negation
	Comparison of Evaluation vs. Negation Approaches

	Experimental Results
	Benchmark Description
	Improving Computation
	Comparing EIA4 and ICAb5

	Conclusion

