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Abstract. This paper investigates the impact of the selection of a trans-
versal on the speed of convergence of interval methods based on the non-
linear Gauss-Seidel scheme to solve nonlinear systems of equations. It
is shown that, in a marked contrast with the linear case, such a selec-
tion does not speed up the computation in the general case; directions
for researches on more flexible methods to select projections are then
discussed.

1 Introduction

The extensions to interval arithmetic [10] of Newton and nonlinear Gauss-Seidel
methods [13] do not suffer from lack of convergence or loss of solutions that
cripple their floating-point counterparts, which makes them well suited to solve
systems of highly nonlinear equations.

For the linear case, it is well known that reordering equations and variables
to select a transversal is paramount to the speed of convergence of first-order
iterative methods such as Gauss-Seidel [3, 5]. Transversals may also be com-
puted [14, 7, 4] in the nonlinear case when using nonlinear Gauss-Seidel meth-
ods [12] and when solving the linear systems arising in Newton methods (e.g.,
preconditioned Newton-Gauss-Seidel, aka Hansen-Sengupta’s method [6]).

Interval-based nonlinear Gauss-Seidel (INLGS) methods are of special impor-
tance because they constitute the basis for interval constraint algorithms [4] that
often outperform extensions to intervals of numerical methods.

We show in this paper that, in the general case, it is not possible to choose
statically at the beginning of the computation a good transversal when using an
INLGS method. We also present evidences that reconsidering the choice of the
transversals after each Gauss-Seidel outer iteration is potentially harmful since
it may delay the splitting of domains when the INLGS method is floundering.

Section 2 gives some background on interval arithmetic and its use in the
algorithm based on nonlinear Gauss-Seidel that is used in this paper; Section 3
describes previous works on the selection of a good transversal, and presents
experimental evidences that such a choice may actually be baseless; Section 4
explores alternative ways to select a good set of projections by either choosing
more than n projections for a system of n equations on n variables, or by re-
considering the choice of a transversal dynamically during the solving process;
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Lastly, Section 5 delves into all the experimental facts presented so far to propose
new directions of research for speeding up the solving of systems of nonlinear
equations with INLGS-based algorithms.

2 An Interval Nonlinear Gauss-Seidel Method

Interval arithmetic [10] replaces floating-point numbers by closed connected sets
of the form I = [I, I] = {a ∈ R | I � a � I} from the set I of intervals, where I
and I are floating-point numbers. In addition, each n-ary real function φ with
domain Dφ is extended to an interval function Φ with domain DΦ in such a way
that the containment principle is verified:

∀A ∈ Dφ ∀I ∈ DΦ : A ∈ I =⇒ φ(A) ∈ Φ(I)

Example 1. The natural interval extensions of addition and multiplication are
defined by:

I1 + I2 = [I1 + I2, I1 + I2]

I1 × I2 = [min(I1I2, I1I2, I1I2, I1I2), max(I1I2, I1I2, I1I2, I1I2)]

Then, given the real function f(x, y) = x×x+y, we may define its natural interval
extension by f (x, y) = x × x + y, and we have that f([2, 3], [−1, 5]) = [3, 14].

Implementations of interval arithmetic use outward rounding to enlarge the do-
mains computed so as not to violate the containment principle, should some
bounds be unrepresentable with floating-point numbers [8].

Many numerical methods have been extended to interval arithmetic [11, 13].
Given a system of nonlinear equations of the form:

f1(x1, . . . , xn) = 0
. . .

fn(x1, . . . , xn) = 0

(1)

and initial domains I1, . . . , In for the variables, these methods are usually em-
bedded into a branch-and-prune algorithm BaP that manages a set of boxes of
domains to tighten. Starting from the initial box D = I1 ×· · ·×In, BaP applies
a numerical method “prune” to tighten the domains in D around the solutions
of System (1), and bisects the resulting box along one of its dimensions whose
width is larger than some specified threshold ε. The BaP algorithm eventually
returns a set of boxes whose largest dimension has a width smaller than ε and
whose union contains all the solutions to Eq. (1)—note that the boxes returned
may contain zero, one, or more than one solution.

The interval nonlinear Gauss-Seidel method is a possible implementation for
prune. It considers the n unary projections:

f
(1)
1 (x1, I2, . . . , In) = 0

. . .
f (n)

n (I1, . . . , In−1, xn) = 0

(2)



334 F. Goualard and C. Jermann

and uses any unidimensional root-finding method to tighten the domain of each
variable xi in turn. Unidimensional Newton leads to the Gauss-Seidel-Newton
method [12], whose extension to intervals is the Herbort-Ratz method [7].

2 3 4

−1

Initial domain Domain after UN tightening

Domain after BC tightening

f(x) = (x − 1.5)(x − 2)(x − 3)

Fig. 1. Comparison of UN and BC

Let UN be the elementary step per-
formed by one unidimensional New-
ton application to the projection f

(j)
i ,

where i and j may be different [12].
As soon as D is moderately large, it
is very likely that each projection con-
straint will have many “solutions” that
are not solutions of the original real
system, and whose discarding slows
down the computation. The Newton
method will also fail to narrow down
the domain of some xi if there is more
than one solution to the corresponding

projection constraint for the current box D, thereby demanding more splittings
in the BaP algorithm. Achieving the right balance between the amount of work
required by the prune method and the number of splittings performed overall
is the key to the maximum efficiency of BaP. In this very situation, experi-
mental evidences show that trying harder to narrow down the domain of xi

pays off [2]. A way to do it is to ensure that the canonical intervals [Ij , Ij
+] and

[Ij
−

, Ij ], whose bounds are two consecutive floating-point-numbers, are solutions
of f

(j)
i (I1, . . . , Ij−1, xj , Ij+1, . . . , In) = 0. Let BC be an algorithm that ensures

this property (called box consistency [2] of xj w.r.t. the constraint fi = 0 and
D) for a projection f

(j)
i . A simple method to implement it uses a dichotomic

process to isolate the leftmost and rightmost solutions included in D of each
projection constraint.

Example 2. Consider the constraint f(x) = (x − 1.5)(x − 2)(x − 3) = 0 and the
domain I = [1, 4] for x (See Fig. 1). The UN method leaves I unchanged because
the derivative of f over the initial domain contains 0 while BC narrows down I
to I′ = [1.5, 3], which is the smallest interval included in I that contains all the
solutions to the interval constraint f(x) = 0.

3 Static Selection of a Transversal

When System (1) is linear, it is well known that one should reorder fis and xjs
such that the coefficient matrix becomes strictly diagonal dominant [12]. Many
authors have noticed that nonlinear Gauss-Seidel (be it on intervals or not) is
equally sensitive to such a reordering. When System (1) is nonlinear, one may
exchange rows and columns in its incidence matrix 1 so as to obtain a transversal
1 The incidence matrix M associated to System (1) is the zero-one matrix where Mij

is 1 if and only if xj occurs in fi.
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of n pairs (fi, xi) corresponding to the unary projections in System (2) that will
hopefully maximize the convergence rate of INLGS.

Several authors have attempted to compute good transversals for nonlinear
problems:

– Sotiropoulos et al. [14] select a transversal for a polynomial system at the
beginning of the computation by looking at the syntactic structure of the
equations (variables with the largest degree in the system, . . . ), and by
using numerical considerations only to break ties. In their paper, the static
transversal is used in an interval Newton-Gauss-Seidel algorithm;

– Herbort and Ratz [7] compute the Jacobian J of System (1) w.r.t. the ini-
tial box D and select projections according to whether the corresponding
entry in the Jacobian straddles zero or not. Their method is not completely
static since they recompute the Jacobian after each iteration of INLGS (the
choice of projections is not completely reconsidered, though). In addition, it
theoretically allows for the choice of more than n projections;

– Goualard [4] determines an n×n matrix of weights W from the Jacobian J of
Eq. (1) w.r.t. the initial box D corresponding to the distance of each interval
J ij to zero. He then computes a maximum weight perfect matching in the
bipartite weighted graph associated to W , which gives a set of n projections
on which to apply INLGS.

Table 1. Selecting a transversal vs. using all projections

Problems HH HG HS HB GSA
Name

�
n, #sols

�

1 Barton (5,1) NA 881 — 881 378
2 Bronstein (3,4) 8593 6712 4430 6712 10204
3 Broyden-banded (100,1) 4500 4500 NA 4500 30780
4 Broyden-tridiag. (10,2) 12714 1192697 13334 13385 31917
5 Combustion (10,1) 39324 8711299 NA 69546 2581
6 Extended Crag-Levy (8,36) 61707 7532 — 7532 6612
7 Extended Powell (10,32) 272977 268485 — 267591 25130
8 Grapsa-Vrahatis (3,2) NA 246755 299085 17880 15978
9 MAT (3,1) 9639 8590 — 8657 18744

10 Moré-Cosnard (100,1) 1200 1200 NA 1200 100000
11 Robot (8,16) NA 36179 NA 36179 8510
12 Troesch (10,1) 260 260 — 260 728
13 Yamamura (5,5) 690 4984061 690 690 3450
Number of calls to BC to find all solutions up to a precision of 10−8

We tested the above heuristics on thirteen classical problems [1, 9, 14]. Eight
problems are polynomial, and five are not. The heuristics of Herbort and Ratz
(HH), Goualard (HG), and Sotiropoulos et al. (HS) served to compute a
transversal of n projections used in an INLGS algorithm where the univari-
ate root-finding method is BC. The initial box is the one published in the papers
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cited. Table 1 presents the overall number of calls to BC needed to compute a
set of solution boxes with width less than 10−8. The dash entries correspond
to the cases where an heuristics is not applicable (non polynomial problems for
HS). An “NA” entry signals that the problem could not be solved in less than
5 minutes on an AMD AthlonTM XP 2600+. Each problem is identified by its
name followed by its dimension and its number of solutions between parentheses.
Heuristics HB corresponds to the choice of a maximum weight perfect matching
computed from a matrix W where Wij is the relative reduction2 performed by
applying BC on f

(j)
i for the initial box. This heuristics serves as a benchmark

of what could be the best choice of a transversal, assuming the efficiency of a
projection does not vary during the solving process. Column GSA gives the
results when using all possible projections (that is, at most n2). The boldfaced
entries correspond to the smallest number of calls to BC per problem.

Analysis of Table 1. Whatever the heuristics chosen, selecting statically (or
semi-statically for HH) a transversal of n projections is better than using the at
most n2 projections (GSA) for only 7 problems out of 13. We have monitored the
amount of reduction obtained by applying BC on each of the possible projections
during the whole solving process for every problem3. Upon close study, it is
possible to separate the problems into two categories: those for which exactly n
projections reduce the domains much better than the others, and those for which
no such dichotomy can be made. The results for GSA follow closely that division:
if there indeed exists a good transversal, the heuristics usually fare better than
GSA because they are likely to choose it; if there is no good transversal, GSA
is better because it avoids selecting a bad set of n projections, and makes the
most out of the capability of all the projections to tighten the domains. This is
in line with the conclusions by Goualard [4]. For those problems having a good
transversal (2, 3, 4, 9, 10, 12, 13), the results of the heuristics vary widely, and
some problems cannot be solved in the allotted time. At this point, the only
reason that comes to mind is that the heuristics did choose a bad transversal
and were stuck with it since the choice is not reconsidered dynamically. We will
see in the next section that another reason may explain this situation. The HB
heuristics also appears a good choice for problems with a good transversal since
it never flounders on the seven presented here. However, the fact that it is not
always the best method shows that the first reduction of a projection does not
measure its overall efficiency, i.e., the efficiency of a projection varies during
the solving process. In addition, it is slow on problems without a transversal.
On the other hand, we cannot rely on GSA to solve problems with a good
transversal since it is too computationally expensive to handle n2 projections
instead of just n of them, especially for problems with a dense incidence matrix
(e.g., Moré-Cosnard).

2 The relative reduction is defined by (w(Ib
j )−w(Ia

j ))/w(Ib
j ) where w(Ib

j ) (resp. w(Ia
j ))

is the width of the domain of xj before (resp. after) applying BC on f
(j)
i .

3 All the log files containing detailed statistics for the problems presented are available
at http://interval.constraint.free.fr/problem-statistics.tar.gz
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The problems without a good transversal may have no projection that is
consistently better than the others; alternatively, it is possible that there exists
a set of n or more good projections whose composition varies with the domains
of the variables during the solving process. The next section investigates this
matter to find out whether it is possible to optimize the computation for all
problems.

4 Beyond the Choice of a Static Transversal

In order to assess conclusively whether a dynamic recomputation of a transversal
may lead to good performances for all problems, we have decided to consider the
HB heuristics only. Obviously, the results obtained are then only a benchmark of
the level of performances that is theoretically attainable, since the HB heuristics
works as an oracle able to tell us in advance what are the best reductions possible
at some point in the computation.

Table 2 presents the results of our tests:

– HBn
1 is the HB heuristics presented in the previous section;

– HBn
∞ corresponds to the dynamic recomputation of a transversal in the

same way as HB after each outer iteration of INLGS;
– HBn+k

1 statically selects the best projection per variable (n) and then the
best projection for each equation not already covered in the first selection
(0 � k � n − 1). It removes the transversality constraint that may yield
suboptimal projections, avoiding also the use of costly matching algorithms;

– HBn+k∞ recomputes dynamically a set of n + k projections according to
HBn+k

1 after each outer iteration of INLGS.

Table 2. Dynamic and static selection of projections

Problems HBn
1 HBn

∞ HBn+k
1 HBn+k

∞ GSA
Name

�
n, #sols

�

1 Barton (5,1) 881 140 1470 299 378
2 Bronstein (3,4) 6712 6011 7961 6308 10204
3 Broyden-banded (100,1) 4500 4500 4500 6041 30780
4 Broyden-tridiag. (10,2) 13385 41019 13385 48941 31917
5 Combustion (10,1) 69546 950 47848 1309 2581
6 Extended Crag-Levy (8,36) 7532 7544 63947 5252 6612
7 Extended Powell (10,32) 267591 12137 415969 18412 25130
8 Grapsa-Vrahatis (3,2) 17880 6575 421945 9341 15978
9 MAT (3,1,5) 8657 8324 12554 7589 18744

10 Moré-Cosnard (100,1) 1200 1200 1200 1201 100000
11 Robot (8,16) 36179 5711 2219189 3422 8510
12 Troesch (10,1) 260 260 260 265 728
13 Yamamura (5,5) 690 710 690 931 3450
Number of calls to BC to find all solutions up to a precision of 10−8
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Analysis of Table 2. GSA is no longer the best method on any of the prob-
lems, leading to the conclusion that it is always worthwhile to consider subsets
of good projections. The dynamic heuristics (HBn∞ and HBn+k∞ ) lead to the
least number of calls to BC for the majority of the problems, which is not so
surprising since they guarantee to know in advance for the current iteration the
projections for which BC will tighten variables domains the most. The fact that
HBn

∞ is slightly better than HBn+k
∞ is an evidence that most problems that do

not have a static transversal may still have a dynamic one. Note, however, that
the transversality constraint might lead to choose some of the less effective pro-
jections. This may explain why HBn+k

∞ is better than HBn
∞ on Problems 6, 9,

and 11. While dynamic heuristics are often better, they sometimes lead to poorer
performances (e.g., for Problems 4 and 13). A close look at the computation logs
for these problems reveals that the intervals of time between two bisections in
HBn

∞ and HBn+k
∞ are larger than in HBn

1 and HBn+k
1 , which is quite natural

since the better choice of the projections leads to more reductions, and then to
more iterations before the quiescence of INLGS and the necessity to split. This
is good when the reductions are significant; on the other hand, such a behavior
is undesirable when the reductions performed are small: it would then be much
better to stop the iterations and bisect the domains altogether.

5 Conclusions

We have seen in Section 3 that heuristics that select a transversal only once
at the beginning are doomed to fail on many problems for which such a static
transversal does not exist. However, we have found in Section 4 that it is usually
possible to isolate dynamically a set of good projections whose composition
evolves during the solving process; as said before, the method we have used to
find the elements of this set is only a benchmark of the optimizations attainable
since it requires to find in advance what are the projections with which BC will
tighten the domains of the variables the most. What is more, we may expect
that the cost of recomputing a good transversal dynamically by any heuristics,
however cheap, may more than offset the benefit of not having to consider n2

projections for all problems but the ones with the densest incidence matrix.
There is still hope however: we have seen in Table 2 that a static heuristics like

HBn
1 works as well as the best dynamic heuristics for the problems that have

a good static transversal. A direction for future researches is then to identify
beforehand whether a problem has such a good static transversal, and revert to
GSA if it does not. More generally, it would be interesting to determine whether
a projection will be always good, always bad, or of varying interest in order
to use it in an appropriate way. Along these lines, our preliminary experiments
suggest that Artificial Intelligence-based methods such as reinforcement learning
approaches [15] used to solve the Nonstationary Multi-Armed Bandit Problem
are well-suited to tackle the dynamics behind the behavior of the projections
during the solving process.
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