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The implementation of inverse functions provided by most interval arithmetic software libraries is
restricted to bijective functions and to the principal branch of multivalued functions. On the other
hand, some algorithms—most notably, constraint propagation algorithms—require multivalued
inverse functions as well. We present in details in this paper the algorithms to implement interval
arithmetic extensions of the following multivalued inverse functions: the inverse integral power,
the inverse cosine, the inverse sine, the inverse tangent, the inverse hyperbolic cosine, and the
inverse multiplication. The issues raised by their effective as well as efficient implementation with
floating-point numbers in the gaol C++ library are carefully addressed.
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1. INTRODUCTION

Given the relation y = cosx, where x lies in the interval [10, 14], interval arith-
metic [Moore 1966] will readily allow us to compute the possible values for y by
considering the monotonic subdomains of the cosine function over [10, 14]: y ∈
[cos 10, 1] ≈ [−0.84, 1]. On the other hand, what is the possible domain for an
unknown x if the domain for y is [−0.3, 0.2]? Most interval arithmetic libraries
will fix it at [acos 0.2, acos−0.3] ≈ [1.36, 1.87] because they consider branch cuts
of the multivalued inverse cosine to return principal values in the domain [0, π]
only. Now, what if we knew that x lay in the domain [20, 26]? The aforementioned
inverse cosine interval function would not be of much help here, while consider-
ing a multivalued inverse cosine would allow us to restrict the domain of x to
[6π + acos 0.2, 8π − acos 0.2] ≈ [20.22, 23.77] (see Figure 1).

Such a use of relations between variables together with domains of possible val-
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Fig. 1. Computing the inverse cosine of [−0.3, 0.2] with respect to the interval [20, 26]

ues to infer tighter consistent domains is the core principle of Constraint Program-
ming [Dechter 2003; Sutherland 1963]. Interval Constraint Programming [Ben-
hamou 2001; Davis 1987] is an instance of this framework that considers rela-
tions over continuous variables whose domains are represented by intervals with
floating-point number bounds. It combines smart propagation algorithms [Mack-
worth 1977] with original domain-contracting algorithms to solve linear and nonlin-
ear continuous problems, with very good performances on some difficult problems
when compared to traditional mathematical methods [Granvilliers and Benhamou
2001]. Some of these contracting methods (most notably, HC3 [Benhamou 1995;
Lhomme 1993], HC4 [Benhamou et al. 1999], and their derivatives), make extensive
use of interval extensions of the inverse of usual mathematical functions, be they
bijective or not. Since the pioneering work of Cleary [Cleary 1987] on interval rela-
tional arithmetic, algorithms to compute the interval extensions of inverse functions
have been repeatedly devised for the exclusive benefit of various solving systems
(BNR Prolog [Older and Vellino 1990], Prolog IV [Benhamou and Touräıvane 1995],
Ilog Solver [Puget 1994], and RealPaver [Granvilliers and Benhamou 2006], among
others) up to the point they are almost considered as part of the computing lore.
To our knowledge, however, no detailed description of these algorithms has ever
been published—to the important exception of the algorithm for the inverse multi-
plication [Hickey et al. 2001]. As a consequence, the existing implementations may
vary widely in reliability, speed, and in the functions supported.

This paper is an attempt to straighten this situation out at a moment when in-
terval arithmetic is being considered for addition to the standard library of such an
ubiquitous language as C++ [Brönnimann et al. 2006b] . We stress the differences
between standard interval inverse operators and interval multivalued inverse oper-
ators in Section 2, retracing meanwhile the history of interval relational arithmetic,
which motivated their definition. Related work is discussed in Section 3, where
we present the tools and libraries that implement interval relational arithmetic,
contrasting their approach with our own work in the gaol C++ library [Goualard
2007]. The algorithms for the inverse power function, the inverse cosine, the in-
verse sine, the inverse tangent, and the inverse hyperbolic cosine are presented in
Section 4; for the sake of completeness, we also give the formulas already published
by Hickey and others [Hickey et al. 2001] for the inverse multiplication. The ac-
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Interval Extensions of Multivalued Inverse Functions · 3

tual implementation of these algorithms in gaol is considered in details in the same
section. It is then compared in Section 5 with respect to quality and performance
with another freely available library.

2. FROM INTERVAL ARITHMETIC TO INTERVAL RELATIONAL ARITHMETIC

Though its history predates the development of computers,1 interval arithmetic
gained most of its momentum as a drop-in replacement for floating-point num-
bers [IEEE 1985] to reason over sets and to overcome the weaknesses of computer
arithmetic [Warmus 1956; Sunaga 1958; Moore 1966]. Therefore, most of the early
works in the domain focused on extensions to intervals of well-known mathemati-
cal methods such as Newton-Raphson’s [Moore 1966] and Gauss-Seidel’s [Hansen
and Sengupta 1981]. As a consequence, the interval operators defined were, for the
most part, straight extensions to intervals of their floating-point counterpart, with
multivalued inverse functions restricted to their principal branch.

Even now, most of the software libraries available [Yohe 1979; Aberth and Schae-
fer 1992; Knüppel 1994; Wiethoff 1996; Rump 1999; Microsystems 2002; Revol and
Rouillier 2005; Lerch et al. 2006] only offer the limited set of interval operators
necessary to support a functional approach to mathematical algorithms.

Such an approach is well suited to the imperative programming paradigm, where
assignment is the crux of the instruction set. There are, however, some paradigms,
such as Logic Programming [Kowalski 1974], based not on the idea of functions, but
on relations: In a language like Prolog [Clocksin and Mellish 1981], the programmer
should not write statements like:

y ← cosx

that sets the variable y to the cosine of x, as a Prolog program should not have
definite input and output. Hence the use, instead, of relations binding the values
of x and y:

y = cosx,

where both y and x may take the role of the unknown.
Until the work by Cleary [Cleary 1987], however, Prolog’s arithmetic was not

up to Logic Programming expectations since it was using the infamous “is/2”
predicate, which was purely functional in nature. Cleary introduced the use of
intervals to enclose real values with certainty, together with rules to project an
arithmetic relation onto each of the variables involved. The relation y = cosx, for
example, would then be translated into two functional statements:

{

Ix ← Ix ∩ (cos−1
Iy)

Iy ← Iy ∩ (cos Ix)
(1)

making use of the inverse cosine “cos−1,” with Ix and Iy the domains of x and y
respectively.

1Refer to the web site Interval Computations at http://www.cs.utep.edu/interval-comp/ and,
in particular, to its page Early Papers on Interval Computations for references to the relevant
works.
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4 · Frédéric Goualard

Obviously, the interval extension of “cos−1” has to be markedly different from
that of the usual arccosine function as it shall not be restricted to the principal
branch of the inverse cosine. By definition, we have:

{

acos Iy = cch ({x ∈ [0, π] | ∃y ∈ Iy : x = acos y})
cos−1

Iy = cch ({x ∈ R | ∃y ∈ Iy : y = cosx})
(2)

where the “cch” operator is a function from the power set P(R) of R to the set
of intervals with floating-point bounds I that returns the smallest interval (in the
sense of set inclusion) containing its argument.2

The definition of “cos−1” given in Eq. (2) is evidently useless since the only
interval such a function would return for any argument Iy satisfying Iy∩[−1, 1] 6= ∅

would be [−∞, +∞].3 The same would hold for all periodic functions. A simple way
to tackle this problem is to consider an (n+1)-ary inverse operator ⊤−1 for any n-
ary operator ⊤, which computes the inverse operation on some n-tuple (x1, . . . , xn)
with respect to some variable xn+1. For example, for the cosine function, we obtain
the inverse cosine “acos rel” defined by:

acos rel(Iy, Ix) = cch ({x ∈ Ix | ∃y ∈ Iy : y = cosx}) .

Cleary’s seminal paper restricted itself to addition and multiplication relational
forms, and did not consider cosine or any other trigonometric relation. More to the
point, his paper did not give any algorithm in sufficient details to implement the
inverse operators needed. Following Cleary’s work on a better Prolog arithmetic,
Davis [Davis 1987], Hyvönen [Hyvönen 1989; 1995], and Older & Vellino [Older
and Vellino 1990] investigated the use of interval arithmetic to solve constraint
systems, which led them to consider interval relational arithmetic too. Except
for some considerations on the inversion of the square function, Davis’ paper does
not give algorithms to implement inverse functions; the same holds for Hyvönen’s
papers, even though reversed mappings—his name for inverse functions—appear
prominently in the LIA InC++ software library manual [Hyvönen 1995]. In 1989,
Older [Older 1989] gave one of the first published algorithms to handle the relation
x× y = z with the three functional forms:







Ix ← div rel(Iz, Iy, Ix)
Iy ← div rel(Iz, Ix, Iy)
Iz ← Ix × Iy

making use of the ternary inverse multiplication “div rel” defined by:

div rel(Iz, Iy, Ix) = cch ({x ∈ Ix | ∃y ∈ Iy∃z ∈ Iz : xy = z}) .

It is, however, presented as a Prolog program without any explanation or proof of
correctness, nor does it take into account the delicate problem of outward rounding.

2This operator is often called “hull” (and sometimes noted “�”) in the interval constraint pro-
gramming literature. In this paper, however, we adopt the notations sponsored by Kearfott and
others [Kearfott et al. 2005].
3We consider here the compactification of R as the real projective line, as described by the
IEEE 754 standard [IEEE 1985].
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Interval Extensions of Multivalued Inverse Functions · 5

In the nineties, Benhamou and Lhomme concurrently formalized the works by
Older and Vellino on BNR(Prolog) and clp(BNR), establishing the foundations for
Algorithms HC3 [Benhamou 1995] and Ref filtering [Lhomme 1993], which both rely
on interval relational arithmetic. Since then, these two algorithms have been used
repeatedly as building blocks for ever complex methods to solve difficult nonlin-
ear problems with increasing performances [Benhamou et al. 1999; Ceberio and
Granvilliers 2000; Granvilliers and Benhamou 2006; Fränzle et al. 2007].

Meanwhile, the available information on how to implement interval relational
arithmetic remained scarce, and was mostly restricted to a series of papers by
Hickey and his co-authors: An algorithm for the relation y = expx was presented
in 1996 [Hickey and Ju 1996] (the paper was primarily focused on performances, as
the computation of both exp and exp−1 do not require a complex machinery per se,
the exponential function being invertible); algorithms to handle the multiplication
relation x × y = z were presented in two subsequent papers [Hickey and Ju 1997;
Hickey et al. 2001], the last one being considered as the definitive work on the
subject. The work by Hickey and others on interval relational arithmetic led to the
implementation of the smath software library [Hickey 2005], one of the few freely
available libraries offering multivalued inverse functions. This library, along with
other libraries and tools, is considered in the next section.

3. AVAILABILITY OF INTERVAL RELATIONAL ARITHMETIC

Original implementations of interval relational arithmetic are present in several
constraint solvers, such as Mozart [Mejias et al. 2006], ECLIPSe [Cheadle et al.
2007], Realpaver [Granvilliers 2004], INCLP(R) [De Koninck et al. 2006] or Prolog
IV, to name a few of the most prominents and most recents.4 When embedded in
such tools, interval relational arithmetic is usually not directly accessible to users.
One has to choose among the few software libraries that implement it to get an
unfettered access:

—Ilog Solver [Ilog Inc. 2007] is a closed-source commercial product. It is much
more than an interval library only, as it also offers many constraint propagation
algorithms;

—smath [Hickey 2005] is the C library by Hickey alluded to in the previous section.
It lacks some operators (e.g., hyperbolic inverse functions) but it is a fast and
lightweight library that can be mastered in its entirety very quickly;

—Boost [Dawes et al. 2007] is a huge C++ library seeking to be a reference im-
plementation of many algorithms for the C++ stan dard. It contains an interval
arithmetic section [Melquiond et al. 2007; Brönnimann et al. 2006a], in which
interval relational arithmetic is still, however, at an early stage. It has indeed
not found its way into the current release yet.5 Still, it is a promising, very cus-
tomizable library. For better or for worse, it relies on advanced features of the
C++ standard that are not widely available yet.

To our knowledge, most of the algorithms used by these tools and libraries have
never been published. There may then be significant differences in reliability and

4Note that Prolog IV is no longer publicly available, though.
5This is the case as of Version 1.34.1 of the library.
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6 · Frédéric Goualard

performances of the various implementations. They also differ in the relations
supported (INCLP(R), for example, does not implement trigonometric, hyperbolic
and other transcendental inverse functions).

Originating from our work on constraint programming algorithms, gaol6 [Goualard
2007] is a C++ library implementing interval extensions of functional as well as
relational operators. It has served as a model for Section 26.6.15 on interval rela-
tional operators of the proposal to add interval arithmetic to the C++ standard
library [Brönnimann et al. 2006b]. It has been freely available on Sourceforge since
October 2002 with a GNU Lesser General Public license,7 and has been down-
loaded ca. 1400 times as of November 2007. To our knowledge, it is being used
in the following constraint solvers: OpenSolver [Zoeteweij and Arbab 2004], Con-
straint Explorer [Zimmer 2004] by Dassault Aviation, and Elisa [Christie et al.
2005]. It is also being used in various research projects (e.g., Feydy and Stuckey’s
work on using an interval approach to solve linear equations [Feydy and Stuckey
2007]).

We present in the next section what we believe to be the first detailed description
of the algorithms to implement interval relational arithmetic in the hope it can serve
as a common ground for future works on the subject, and as a starting point for
better, faster algorithms. In our view, the only freely available and mature library
that offers roughly the same features as gaol is smath. We therefore compare in
Section 5 our implementation with smath’s as for performances and tightness of
the results.

4. THE IMPLEMENTATION OF INTERVAL RELATIONAL ARITHMETIC IN GAOL

Gaol is a software library of around 20, 000 lines of C++ code (comments in-
cluded). It used to be available on SUN Sparc/Solaris, Microsoft Windows/ix86
and Linux/i86. For lack of time, only the last two platforms are currently actively
supported. Porting it to other platforms should not be difficult, though, provided
a C99 standard-compliant compiler [C99 1999] be available, as we rely on several
C99 functions for rounding operations.

For the sake of readability the following algorithms are presented in a simple
pseudo-language that is almost, but not quite, entirely unlike Python [Python Soft-
ware foundation 2007]. In addition, we use the following notations: The left (resp.
right) bound of an interval I is written I (resp. I). The bounds of the intervals are
IEEE 754 floating-point numbers in the double format (that is, representation on
64 bits, with 1 sign bit, 11 bits for the biased exponent, and 52 bits of fractional
part, as specified by the standard [IEEE 1985]). Let F be the set of such floating-
point numbers. Any number that is not perfectly representable with a double is
rounded: fl▽(x) (resp. fl△(x)) rounds the real x to the largest double smaller or
equal to x (resp. smallest double larger or equal to x). The empty interval is rep-
resented by “∅.” It is implemented by intervals where one of the bounds at least is
an NaN (Not A Number) [Goualard 2000]. An interval whose left bound is strictly

6The game of the name: The first name of gaol was jail, standing for Just Another Interval
Library, until we realized that having relational operators as well as functional ones—a rare trait
among interval libraries—, gaol was no longer just another interval library. . .
7See the page at http://www.gnu.org/licenses/lgpl.html for what that means and entails.
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Interval Extensions of Multivalued Inverse Functions · 7

greater than its right bound is also considered empty.
Switching the rounding direction incurs a high cost because it disrupts the stream-

lining of instructions by requiring the emptying of the FPU pipelines. To counter
this, gaol relies almost entirely on upward rounding only, achieving downward
rounding when necessary by using simple floating-point properties (e.g., fl▽(x× y) =
− fl△((−x)× y)). This approach minimizes rounding switches without eliminating
them entirely, as some floating-point functions (most notably trigonometric, hy-
perbolic and other transcendental functions) often require a particular rounding
direction to compute their value with the proper rounding. For better readability,
however, we use both downward and upward rounding in the following algorithms.

The IEEE 754 standard requires addition, subtraction, multiplication, division,
and square root to be correctly rounded, which means that the value computed
should be the closest floating-point number less or greater (depending on the current
rounding direction) than the true result. There is no such requirement for the
other functions. The gaol library is insulated from the actual floating-point library
idiosyncrasies by proxy functions with the expected behavior (e.g., cos dn() and
cos up() are gaol functions that call the actual cos() function and ensure that the
result returned is rounded downward or upward). As expected, the implementation
of the proxies depends on the floating-point library used. The current version of
gaol uses the IBM Accurate Portable Mathematical Library [Ziv et al. 2001]. The
accuracy of the proxy functions is tied to the one of the underlying floating-point
library. They may, therefore, return values that are not the floating-point numbers
closest to the true results in the current rounding direction. As a consequence, the
algorithms presented below return, in the general case, an enclosing interval of the
closed convex hull of the inverse operators.

4.1 Inverse Multiplication

The inverse multiplication div rel is used in the processing of the relation x× y = z
to determine new domains for x and y:

div rel(Iz, Iy, Ix) = cch ({x ∈ Ix | ∃y ∈ Iy∃z ∈ Iz : xy = z}) .

As said previously, the algorithm to compute it has already been published by
Hickey and others [Hickey et al. 2001]. For the sake of completeness, we recapitulate
in Table I the various possible cases and refer the reader to their paper for more
information.

A fine-grained analysis leads to 36 cases depending on the position of the dividend
and of the divisor on the real line. In addition, if at least one of the operands is
empty, the result is the empty interval.

It is possible to take advantage of SIMD instructions on modern CPUs to vec-
torize the tests and to perform in parallel the various divisions needed. However,
depending on the authors, the expected gain does not seem worth it [Wolff von
Gudenberg 2002; Malins et al. 2006].8

8Some extra work in the field appears in order, though, as some authors [Lambov 2006] report
large gains with some instruction sets (in particular, Streaming SIMD Extensions 2 by Intel in
the paper cited).
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Table I. Inverse multiplication div rel(Iz, Iy, Ix) for non-empty operands
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Interval Extensions of Multivalued Inverse Functions · 9

4.2 Inverse Power Function

The inverse power function nth root rel() is needed to compute the domain of an
unknown x in a relation of the form xn = y. Our implementation restricts n to the
set N of natural numbers. The precise definition is:

nth root rel(Iy, n, Ix) = cch ({x ∈ Ix | ∃y ∈ Iy : y = xn}) , n ∈ N.

Following Graham and others [Graham et al. 1994], the algorithm given in Ta-
ble II assumes 00 = 1.

The cases occurring in Function nth root rel() in Table II are justified graph-
ically in Figures 2 and 3, which represent principal branches of the nth root for n
odd and even.

y

x
yfl△( 1

n
)

yfl▽( 1
n
)

y
1
n

1

1

-1

-1

a1 b1 a2 b2

a3 b3
a4 b4

Fig. 2. Inverse power of n for n odd

Many mathematical libraries do not handle well a call to pow() with negative
arguments for non-integral exponents, as is the case on Lines 20, 22, 29, 31 in
Table II. In that case, an easy workaround is to take the opposite twice and to
round the result in the opposite direction as usual: For example, Line 20 would be

replaced by “l← − fl△

(

pow(−Iy, fl▽

(

1
n

)

)
)

.”

For n even, the intersection with Ix is performed separately for the negative side
and the positive side (see Line 47) in order to compute the tightess domain possible.

4.3 Inverse Cosine

Given the relation y = cosx, the inverse cosine is used to compute a new domain
for x with respect to y. Due to the periodicity of the cosine function, the inverse
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10 · Frédéric Goualard

Table II. Inverse Nth power
1 function nth root rel(Iy ∈ I, n ∈ N, Ix ∈ I):
2 % Computes an enclosing interval for cch ({x ∈ Ix | ∃y ∈ Iy : y = xn})
3 if n = 0:
4 if 1 ∈ Iy:
5 return Ix

6 else:
7 return ∅

8 elsif n = 1:
9 return Ix ∩ Iy

10 else:
11 if odd(n):
12 if Ix = ∅∨ Iy = ∅:
13 return ∅

14 % Computing the left bound

15 if Iy > 1:

16 l← pow dn(Iy ,fl▽

(

1
n

)

) % See “proxy functions” on Page 7

17 elsif Iy > 0:

18 l← pow dn(Iy ,fl△

(

1
n

)

)

19 elsif Iy >−1:

20 l← pow dn(Iy ,fl▽

(

1
n

)

)

21 else:

22 l← pow dn(Iy ,fl△

(

1
n

)

)

23 % Computing the right bound

24 if Iy > 1:

25 l← pow up(Iy ,fl△

(

1
n

)

) % See “proxy functions” on Page 7

26 elsif Iy > 0:

27 l← pow up(Iy ,fl▽

(

1
n

)

)

28 elsif Iy >−1:

29 l← pow up(Iy ,fl△

(

1
n

)

)

30 else:

31 l← pow up(Iy ,fl▽

(

1
n

)

)

32 return [l, r] ∩ Ix

33 else: % even(n)
34 Iy

′ ← Iy ∩ [0, +∞]
35 if Ix = ∅∨ Iy

′ = ∅:
36 return ∅

37 % Computing the left bound

38 if Iy > 1:

39 l← pow dn(Iy ,fl▽

(

1
n

)

)

40 else:

41 l← pow dn(Iy ,fl△

(

1
n

)

)

42 % Computing the right bound

43 if Iy > 1:

44 l← pow up(Iy ,fl△

(

1
n

)

)

45 else:

46 l← pow up(Iy ,fl▽

(

1
n

)

)

47 return cch (([l, r] ∩ Ix) ∪ ([−r,−l] ∩ Ix))
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Interval Extensions of Multivalued Inverse Functions · 11

y

x
yfl△( 1

n)

yfl▽( 1
n)

y
1
n

1

1

a1 b1
a2 b2

Fig. 3. Inverse power of n for n even

cosine has to take into account the domain of x in addition to the one of y in order
to compute the correct projection.

The algorithm “acos rel” used to implement the inverse cosine is presented in
Table III. Figure 4 on Page 14 graphically exemplifies the workings of the algorithm.
In essence, we first compute the regular arccosine of the argument Iy in the domain
[0, π] (see Table IV), and we then translate by klπ and krπ the interval acosIy

obtained to compute new left and right bounds for Ix (see Table V). Integers kl

and kr are computed by performing the first step of an argument reduction of Ix’s
bounds: For the left bound of Ix, we compute an integer kl such that Ix = klπ +α,
with α < π (Lines 14–19 in Table III). Proposition 4.1 below ensures that, under
reasonable conditions, the value kl computed cannot be off by more than 1 from
the true result.

Proposition 4.1. Given l ∈ F a floating-point number, we have:










l
π
−

⌊

fl▽

(

l
fl▽(π)

)⌋

6 1 if −252 6 l < 0

l
π
−

⌊

fl▽

(

l
fl△(π)

)⌋

6 1 if 0 6 l 6 252

where ⌊x⌋ is the greatest integer smaller than x.

Proof. We prove the result for 0 6 l 6 252: Using a classical roundoff error
modeling (see, e.g., Stoer and Bulirsch’s book [Stoer and Bulirsch 1993]) for the
double format in use within gaol, we have:

fl△(π) = π(1 + ε1) with 0 < ε1 6 2−52.

The same holds for the quotient:

fl▽

(

l

fl△(π)

)

=

(

l

π(1 + ε1)

)

(1− ε2) with 0 6 ε2 6 2−52.
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12 · Frédéric Goualard

Table III. Inverse cosine
1 function acos rel(Iy ∈ I, Ix ∈ I):
2 % Returns an enclosing interval for the preimage of Iy w.r.t. the cosine function and Ix:

3 % acos rel(Iy, Ix) ⊇ cch ({x ∈ Ix | ∃y ∈ Iy : y = cos x})
4 if Ix = ∅∨ (Iy ∩ [−1, 1]) = ∅:
5 return ∅

6 if [−1, 1] ⊆ Iy:
7 return Ix

8 acosIy ← acos(Iy) % See Table IV for the definition of “acos”

9 % Checking whether the left bound is too large to perform a reliable range reduction

10 % That is, kl would be off by more than one unit

11 if Ix /∈ [−252, 252]:
12 Rleft ← Ix

13 else:

14 if Ix < 0:

15 kl ←
⌊

fl▽

(

Ix

fl▽(π)

)⌋

16 elsif Ix > 0:

17 kl ←
⌊

fl▽

(

Ix

fl△(π)

)⌋

18 else:
19 kl ← 0
20 % From here, the kl computed is at most off by 1 less than its exact value

21 Rleft ← acos k(kl, acosIy) ∩ Ix % See Table V for the definition of “acos k”

22 if Rleft = ∅:
23 Rleft ← acos k(kl + 1, acosIy) ∩ Ix

24 % Checking whether the right bound is too large to perform a reliable range reduction

25 % That is, kr would be off by more than one unit

26 if Ix /∈ [−252, 252]:
27 Rright ← Ix

28 else:

29 if Ix < 0:

30 kr ←
⌊

fl△

(

Ix
fl△(π)

)⌋

31 elsif Ix > 0:

32 kr ←
⌊

fl△

(

Ix
fl▽(π)

)⌋

33 else:
34 kr ← 0
35 % From here, the kr computed is at most off by 1 more than its exact value

36 if kr = kl:
37 Rright ← Rleft

38 else:
39 Rright ← acos k(kr ,acosIy) ∩ Ix

40 if Rright = ∅:
41 Rright ← acos k(kr − 1,acosIy) ∩ Ix

42 return [Rleft, Rright]

We then have:

l

π
− fl▽

(

l

fl△(π)

)

=
l

π

(

1− 1− ε2

1 + ε1

)

=
l

π

ε1 + ε2

1 + ε1
.

As a consequence, the quotient computed differs from the true quotient l/π by 1 or
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Interval Extensions of Multivalued Inverse Functions · 13

less if and only if:

l

π

ε1 + ε2

1 + ε1
6 1

that is:

l 6
1 + ε1

ε1 + ε2
π (3)

We then need to know the infimum of the right-hand side of Eq. (3) for ε1 ∈ (0, 2−52]
and ε2 ∈ [0, 2−52]. It is obtained for ε1 = ε2 = 2−52, which leads to the upper bound
for l :

l 6 (251 + 2−1)π.

Since, we have:

252 < (251 + 2−1)π < 253

the proposition is proved for 0 6 l 6 252. The proof for −252 6 l < 0 may be
performed analogously and will therefore be omitted.

Similar operations are used to compute a new bound from the right bound of Ix.

Table IV. Arccosine function acos : [−1, 1]→ [0, π]
1 function acos(Iy ∈ I):
2 I′y ← Iy ∩ [−1, 1]

3 if I′y = ∅:

4 return ∅

5 else:

6 return [acos dn(I′y), acos up(I′y)] % See “proxy functions” on Page 7

Proposition 4.1 for computing the left bound—and the similar proposition for the
right bound—implies that we have to compute new bounds for the inverse cosine
only if the bounds of Ix are not too large (more precisely, they shall be smaller than
252 in absolute value). Within the domain [−252, 252], we know that the error made
when computing kl and kr is less than 1 (more precisely, 0 < ⌊l/π⌋ − kl 6 1, and
0 < kr−⌊r/π⌋ 6 1). As a consequence, if the intersection of Ix with the translated
arccosine of Iy by klπ (resp. by krπ) is empty—see Lines 21–23 and 39–41—, it
suffices to translate the arccosine by one more period of π to the right for the left
bound (resp., by one less period of π to the left for the right bound) to ensure
correctness. Note that computing the intersection of Ix with the next period for
the left bound, or the previous period for the right bound, would be sometimes
necessary anyway, as exemplified in Figure 4: We have Ix = [a0, b0], Iy = [c, d], and
the relation y = cosx; here, kr is equal to 2 but the intersection between Ix and
[a3, b3] = 2Π + acos Iy—where Π is the smallest interval containing π—is empty.
We have to consider the previous period to intersect Ix with [a2, b2].

If either bound of Ix is outside the domain [−252, 252], we do not attempt to
modify it (see Lines 11–12 and Lines 26–27).

Possible values for kl and kr range from ⌊−252/π − 1⌋ to ⌊−252/π + 1⌋, while
the typical range for signed integer numbers in two’s complement is from −231 to
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14 · Frédéric Goualard

Table V. Arccosine function translated by kπ
1 function acos k(k ∈ Z, acosIy ∈ I):
2 % Computes acosIy translated to the kth period

3 % Π is the smallest floating-point interval containing π
4 if even(k):
5 return kΠ + acosIy

6 else:
7 return (k + 1)Π− acosIy

0 π
2

π 2π x

y

b0
a0 b3

a3a2 b2
a1 b1

d

c

Fig. 4. Computing the inverse cosine of [c, d] with respect to [a0, b0]

231 − 1 (for 32 bits integers). As a consequence, gaol uses floating-point numbers
to represent kl and kr in the actual implementation of “acos rel.9”

4.4 Inverse Sine

The inverse sine is required to compute a new domain for x with respect to y in the
relation y = sin x. It could be easily implemented in the same way as “acos rel.”
However, it is even easier to define it in terms of “acos rel” itself by using simple
trigonometric identities, as presented in Table VI.

Table VI. Inverse sine
1 function asin rel(Iy ∈ I, Ix ∈ I):
2 % Computes a superset of cch ({x ∈ Ix | ∃y ∈ Iy : y = sinx})
3 % Π is the smallest floating-point interval containing π

4 return Π
2

+ acos rel(Iy, Ix −
Π
2

)

In all fairness, the advantages obtained from this approach (“asin rel” may auto-
matically benefit from future improvements to the “acos rel” algorithm; it reduces
the number of lines of code in the library, thereby decreasing the likelihood of bugs)
are counterbalanced by the slight increase in the size of the results with respect to
a direct implementation, which is introduced by the outward rounding occurring in
the operations Ix −Π/2 and the addition of Π/2 to the result of “acos rel.”

9Note that in the domain [−252, 252], all integers have a double floating-point representation.
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Interval Extensions of Multivalued Inverse Functions · 15

4.5 Inverse Tangent

As for the inverse cosine and the inverse sine, the inverse tangent is used to compute
a new domain for x from the domain of y with the relation y = tanx. The algorithm
to implement “atan rel” presented in Table VII goes along the same lines as the
one for “acos rel”: we first compute the periods kl and kr in which fall the left
bound and the right bound of Ix (Lines 8–13 and 21–26). We then compute the
intersection of Ix with atan Iy translated by the relevant periods (Lines 14–16 and
30–32).

Table VII. Inverse tangent
1 function atan rel(Iy ∈ I, Ix ∈ I)
2 % Computes a superset of cch ({x ∈ Ix | ∃y ∈ Iy : y = tan x})
3 if Ix = ∅∨ Iy = ∅:
4 return ∅

5 if Ix /∈ [−251, 251]:
6 Rleft ← Ix

7 else:
8 if Ix < 0:

9 kl =
⌊(⌊

fl▽

(

Ix

fl▽(π÷2)

)⌋

+ 1
)

÷ 2
⌋

10 elsif Ix > 0:

11 kl =
⌊(⌊

fl▽

(

Ix

fl△(π÷2)

)⌋

+ 1
)

÷ 2
⌋

12 else:
13 kl ← 0
14 Rleft ← (atan(Iy) + klΠ) ∩ Ix % See Table VIII for the definition of “atan”

15 if Rleft = ∅:
16 Rleft ← (atan(Iy) + (kl + 1)Π) ∩ Ix

17

18 if Ix /∈ [−251, 251]:
19 Rright ← Ix

20 else:

21 if Ix < 0:

22 kr =
⌊(⌊

fl△

(

Ix
fl△(π÷2)

)⌋

+ 1
)

÷ 2
⌋

23 elsif Ix > 0:

24 kl =
⌊(⌊

fl△

(

Ix
fl▽(π÷2)

)⌋

+ 1
)

÷ 2
⌋

25 else:
26 kr ← 0
27 if kr = kl:
28 Rright ← Rleft

29 else:

30 Rright ← (atan(Iy) + krΠ) ∩ Ix

31 if Rright = ∅:
32 Rright ← (atan(Iy) + (kr − 1)Π) ∩ Ix

33 return [Rleft, Rright]

The periods are counted as follows: Period 0 is from −π/2 to π/2, Period 1 is
from π/2 to 3π/2, Period −1 is from −3π/2 to −π/2, and so on. This is such that
the tangent function be monotonic on each separate period.

As for “acos rel,” we use the following proposition to ensure that the computation
of kl is correctly performed (an analogous result holds for kr):
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16 · Frédéric Goualard

Proposition 4.2. Given l ∈ F a floating-point number, we have:










⌊(⌊

l
π÷2

⌋

+ 1
)

÷ 2
⌋

−
⌊(⌊

fl▽

(

l
fl▽(π÷2)

)⌋

+ 1
)

÷ 2
⌋

6 1 if −251 6 l < 0
⌊(⌊

l
π÷2

⌋

+ 1
)

÷ 2
⌋

−
⌊(⌊

fl▽

(

l
fl△(π÷2)

)⌋

+ 1
)

÷ 2
⌋

6 1 if 0 6 l 6 251

Proof. We prove the result for 0 6 l 6 251 (the case −251 6 l < 0 is proved
in the same way, and is therefore omitted): First, note that the division by 2 does
not introduce any rounding error if we use floating-point numbers conforming to
the IEEE 754 standard. Consequently, we have fl△(π ÷ 2) = fl△(π) ÷ 2. We then
only have to prove:

l

π ÷ 2
− fl▽

(

l

fl△(π)÷ 2

)

6 1 if 0 6 l 6 251.

Using the same modeling for rounding errors as in Proposition 4.1, we get:

l

π ÷ 2
− fl▽

(

l

fl△(π)÷ 2

)

=
l

π ÷ 2

(

1− 1− ε2

1 + ε1

)

with 0 < ε1 6 2−52 and 0 6 ε2 6 2−52. Consequently:

l

π ÷ 2

(

1− 1− ε2

1 + ε1

)

6 1 ⇐⇒ l 6
1 + ε1

ε1 + ε2

π

2
.

With the known bounds on ε1 and ε2, it comes that:

l 6 (250 + 2−2)π

is a sufficient condition for:

l

π ÷ 2
− fl▽

(

l

fl△(π)÷ 2

)

6 1.

Since 251 < (250 + 2−2)π < 252, the proof is complete.

From Proposition 4.2 and the analogous proposition for the right bound, we may
consider that the values computed for kl and kr will be off by 1 or less (by default
for kl and in excess for kr) if the bounds of Ix lie in the domain [−251, 251]. Outside
of this domain, the computation of kl and kr is not safe, and we therefore leave the
corresponding bound of Ix unchanged if such situation arises.

The “atan” function used in Table VII is presented in Table VIII. It uses a
floating-point arctangent function whose range is—as in most mathematical libraries—
[−π/2, π/2].

Table VIII. Arctangent function
1 function atan(Iy ∈ I)
2 % Computes a superset of cch ({x ∈ [−π/2, π/2] | ∃y ∈ Iy : x = atan y})

3 return [atan dn(Iy), atan up(Iy)] % See “proxy functions” on Page 7
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Interval Extensions of Multivalued Inverse Functions · 17

4.6 Inverse Hyperbolic Cosine

The inverse hyperbolic cosine is used to compute a new domain for x with respect
to y in the relation y = coshx. Contrarily to the inverse hyperbolic sine and the
inverse hyperbolic tangent, the inverse of the hyperbolic cosine requires a special
algorithm, which is given in Table IX. It is quite simple and only has to take into
account the evenness of the hyperbolic cosine function.

Table IX. Inverse hyperbolic cosine
1 function acosh rel(Iy ∈ I, Ix ∈ I):
2 % Computes a superset of cch ({x ∈ Ix | ∃y ∈ Iy : y = cosh x})
3 if Ix = ∅∨ Iy = ∅:
4 return ∅

5 acoshIy ← acosh(Iy) % See Table X for the definition of “acosh”

6 if Ix > 0:
7 return Ix ∩ acoshIy

8 elsif Ix 6 0:
9 return Ix ∩ −acoshIy

10 else:
11 return cch ((Ix ∩ acoshIy) ∪ (Ix ∩ −acoshIy))

The “acosh rel” function uses the interval extension “acosh” of the hyperbolic
arccosine presented in Table X. Since no floating-point “acosh” function is imple-
mented in the IBM Accurate Portable Mathematical Library, we make do with the
identity acoshx = log(x +

√
x2 − 1).

Table X. Hyperbolic arccosine
1 function acosh(Iy ∈ I):
2 % Computes a superset of cch

(

{x ∈ R
+ | ∃y ∈ Iy : x = acosh y}

)

3 I′y ← Iy ∩ [1,+∞]

4 if I′y = ∅:

5 return ∅

6 else:

7 return log(I′y +
√

I′y
2 − 1) % See Table XI for the definition of log

Table XI. Interval extension of the logarithm
1 function log(Iy ∈ I):

2 % Computes a superset of cch
(

{x ∈ R
+ | ∃y ∈ Iy : x = log y}

)

3 I′y ← Iy ∩ [0,+∞]

4 if I′y = ∅:

5 return ∅

6 else:

7 return [log dn(I′y), log up(I′y)] % See “proxy functions” on Page 7
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18 · Frédéric Goualard

5. EVALUATION OF THE ALGORITHMS

In order to assess the effectiveness of the algorithms presented, we tested them as
follows: For each one of the relations xy = z, y = cosx, y = sinx, y = tanx,
y = coshx, and y = xn, we randomly generated 10, 000, 000 pairs of non-empty
domains (or triplets of domains, for the relation xy = z), and we applied the
corresponding direct operator and inverse operator on them in order to determine
new domains for the variables, as presented in Eq. (1) on Page 3.

The results are presented in Table XII. We considered the time spent to per-
form the 10, 000, 000 narrowings for two versions of gaol : The “RP” (Rounding
Preserved) column corresponds to the version in which the rounding direction is
set to “upward” once at the beginning of each call to any interval operation, and
set back to its previous value at the end of the operation. The “RNP” (Rounding
Not Preserved) column corresponds to the version in which the rounding direction
is set to “upward” at the very beginning of the program, and is almost never mod-
ified afterwards.10 Note that both versions ensure correctness of the computation;
either one may be selected when configuring gaol prior to compiling it (see gaol ’s
manual). The “RP” version should be used when embedding gaol in a program that
intends to manipulate the rounding direction itself, or that assumes some rounding
direction different from the “upward” one; otherwise, the “RNP” version should be
used, as it is much more efficient.

As a comparison, we also present the results obtained with smath. There is no
entry for the relation “y = acoshx,” as the hyperbolic cosine and its inverse are
not supported by that library. There is no entry for the relation “y = xn” either,
as we could not reliably test the power function for odd values of n. Therefore, the
last row of the table presents results for even values of n only, in order to ensure
some point of comparison for such an important relation.

Besides speed, we also tested the amount of reduction performed by the operators
(Column “Reduction”). For each relation, we give two percentages: the one at
the top represents the average percentage of reduction on all variables and for all
10, 000, 000 tests, excepting the cases where at least one domain was narrowed down
to the empty set; the one at the bottom gives the number of reductions that led to
failure (at least one variable in the relation was narrowed down to the empty set)
as a percentage.

All the experiments were conducted on an Intel Pentium IV at 3.8 GHz with
2 GB of RAM, running Linux Kubuntu Gutsy Gibbon. This computer has a Stan-
dard Unit Time equal to 50.4 s (This is defined as the time required for performing
108 evaluations of the function Shekel 5 [Dixon and Szegö 1978]). All tests were
performed with gaol 3.1.0 and smath 2005-12-19. The 10, 000, 000 non-empty in-
tervals were generated by using the drand48() and rand() standard functions to
create double bounds from a mantissa (obtained with drand48()), an exponent
and a sign (obtained from rand()). The pseudo-random generators were initialized
with the same fixed seed for both gaol and smath. For the purpose of testing the

10This is true only for the functions for which correct rounding is mandated by the standard. For
all other functions (that is, mainly, cos, sin, tan, pow, cosh and their inverses), we have to switch
the rounding to the nearest for each call in order to compute the correct result with the IBM
Accurate Portable Mathematical Library.
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Interval Extensions of Multivalued Inverse Functions · 19

Table XII. Performances on 10, 000, 000 tests per relation

Relation
Time (in s.) Reduction

Gaol
smath Gaol smath

RP RNP

xy = z 29 3.7 5.4
55.5% 56.2% %age reduc.

19.6% 18.4% %age fail.

y = cos x 74.2 16 160.3
56.8% 56.8% %age reduc.

25.1% 25.2% %age fail.

y = sin x 103 37.6 177.2
56.8% 53% %age reduc.

25.1% 19.2% %age fail.

y = tan x 118.8 37.6 362.4
82.5% 53% %age reduc.

9.5% 19.2% %age fail.

y = cosh x 47.7 11 NA
30.5% NA %age reduc.

62.8% NA %age fail.

y = xn 56.1 12.6 NA
23.6% NA %age reduc.

39% NA %age fail.

y = xm,
49.2 12.3 502.5

23% 23.1% %age reduc.

m ≡ 0 (mod 2) 40.7% 40.7% %age fail.

Time on an Intel Pentium IV at 3.8 GHz (rounded to nearest 10th sec.)

power function and its inverse, the values of the exponents n and m were chosen
randomly between 0 and 99 inclusive.

As seen in Table XII, the “RNP” version of gaol is much faster than the “RP”
version, and it outperforms smath on all operators. The “RP” version is still better
than smath on almost all operators, except for the multiplication and its inverse.
As for the quality of reduction, gaol and smath appear equivalent, except for the
“y = tanx” relation: gaol achieves an impressive 82.5% of reduction, versus 53%
for smath. However these figures do not tell the whole story: indeed, smath is
able to discover failure in 19.2% of the cases, versus 9.5% only for gaol. As a
consequence, the results of smath and gaol for the tangent and the inverse tangent
are not directly comparable. Lastly, we observe that the treatment of the cosine
relation is significantly faster than the one of the sine relation, which sheds a new
light on our choice of reusing code for the implementation of the inverse sine (and
for the sine as well).

6. CONCLUSION

The results given in Section 5 should be taken with a grain of salt (shouldn’t they
all?), as they are by no means indicative of the actual performances in real condi-
tions of the libraries tested. They should only be considered as a benchmark for
future works in the domain. However, from the return on experience by those who
already used gaol for their project, we still are confident of its good standing among
the interval libraries available, be it for the quality of its “functional” operators or
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20 · Frédéric Goualard

its “relational” ones.
The gaol library still has weaknesses that should be addressed. In particular, it

is not possible to use bounds of varying precision as in MPFI [Revol and Rouillier
2005] and Boost Interval [Melquiond et al. 2007]. Even for fixed precision, relying
on a library like MPFR [Hanrot et al. 2007], which implements correctly rounded
floating-point functions, would allow us to compute the exact closed convex hull of
all inverse operators supported.
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Journées Francophones de Programmation en Logique. Teknea, Dijon, France, 51–65.
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