
Controlled Propagation in
Continuous Numerical Constraint Networks

Frédéric Goualard
Laboratoire d’Informatique de Nantes-Atlantique

2, rue de la Houssinière – BP 92208
F-44322 Nantes cedex 3

Frederic.Goualard@lina.univ-nantes.fr

Laurent Granvilliers
Laboratoire d’Informatique de Nantes-Atlantique

2, rue de la Houssinière – BP 92208
F-44322 Nantes cedex 3

Laurent.Granvilliers@lina.univ-nantes.fr

ABSTRACT
Local consistency is usually enforced on continuous con-
straints by decomposing them beforehand into so-called pri-
mitive constraints. It has long been observed that such a
decomposition drastically slows down the computation of
solutions. Five years ago, Benhamou et al. introduced an al-
gorithm that avoids formally decomposing constraints, and
whose efficiency is often on a par with state-of-the-art meth-
ods. It is shown here that this algorithm implements a strat-
egy to enforce on a continuous constraint a consistency akin
to directional bounds consistency as introduced by Dechter
and Pearl for discrete problems. The actual impact of de-
composition is also thoroughly analyzed by means of new
experimental results.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—backtracking ; G.1.0 [Numerical

Analysis]: General—interval arithmetic

General Terms
Algorithms, Performance

Keywords
Local consistency, directional consistency, constraint propa-
gation

1. INTRODUCTION
Waltz’s seminal paper [11] promoted the idea of local con-

sistency enforcement to solve constraints. A system of con-
straints was solved by considering each of them in turn, dis-
carding the values in the domains of the variables involved
that could not possibly be part of a solution. Montanari [9]
and Mackworth [8] introduced the notion of a network of
constraints in which a more involved scheme for propagating

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05 , March 13-17, 2005, Santa Fe, New Mexico, USA
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

domain modifications can be used. Davis [3] later adapted
these works to solve continuous problems by employing in-
terval arithmetic [10] to handle the domains of the variables.

The first solvers to implement the ideas of Davis and oth-
ers were enforcing on continuous constraints a relaxation of
arc consistency, bounds consistency (aka 2B consistency),
which is better suited to continuous domains. For practi-
cal reasons, bounds consistency can only be effectively en-
forced on binary and ternary constraints. More complex
constraints then have to be decomposed into such simpler
constraints, thereby augmenting the number of variables and
constraints to eventually consider.

Five years ago, Benhamou et al. presented the HC4 algo-
rithm [1], which is strongly related to the methods employed
to enforce bounds consistency except for its ability to handle
constraints without formal decomposition. HC4 was shown
to exhibit performances on a par with state-of-the-art inter-
val arithmetic-based methods on some large problems. In
their paper, the authors did not analyze HC4 on a theo-
retical point-of-view. They claimed, however, that it would
enforce bounds consistency on the system of primitive con-
straints stemming from the decomposition of a constraint
containing no more than one occurrence of any variable.

The first contribution of this paper is the characterization
of the consistency HC4 enforces on one constraint in terms of
the equivalent on continuous domains of directional bounds
consistency introduced by Dechter and Pearl [5]. We also
disprove Benhamou et al.’s claim concerning it computing
bounds consistency for constraints with variables occurring
at most once, and we prove that HC4 enforces union consis-
tency on such constraints. The actual impact of the decom-
position of constraints is also investigated by analyzing new
experimental results that make extensive use of S-boxes [7]
ability to control the propagation in a constraint network.

2. LOCAL CONSISTENCY TECHNIQUES
Consider variables from an infinite countable set {x1, x2,

. . . }, with their associated domains of possible values D[x1],
D[x2], . . . , and constraints, which state some relation be-
tween variables. A constraint C on a finite set of variables
S[C]—its scope—with domains D is a subset of the product
of their domains.

A constraint problem P is formally characterized by a
triplet (V, D, R), where V is a finite set of variables with
domains D, and R is a set of constraints such that the union

377

2005 ACM Symposium on Applied Computing

of their scopes is included in V .

The basic step to solve a constraint problem corresponds
to the inspection of each of its constraints C in turn and to
the removal of all the values in the domains of the variables
in S[C] that cannot be part of a solution of C. To this end,
we need to be able to project C onto each of its variables.
This notion of projection is formally stated below.

Definition 1 (Projection of a constraint). Let C
be a constraint, D a Cartesian product of domains, and x
a variable in C. The projection of C on x w.r.t. D is the
set Π(C, D, x) of values in D[x] that can be extended to a
solution of C in D.

A projection is then the set of consistent values of a vari-
able relative to a constraint. The well-known arc consis-
tency property [8] demands that all values in a domain
be consistent. This property is clearly too strong for our
purpose since it has no practical counterpart for continu-
ous domains in the general case. We then only consider
weaker consistency notions, depending on the approxima-
tion function we use to manipulate real relations: given I

the set of intervals whose bounds are representable num-
bers (floating-point numbers), and U the set of finite unions
of such intervals, let hull(ρ) =

T

{D ∈ I
n | ρ ⊆ D}, and

union(ρ) =
T

{D ∈ U
n | ρ ⊆ D}, for all ρ ⊆ R

n.

Using the hull (resp. union) approximation on intervals
(resp. unions of intervals), we may define bounds consistency
(resp. union consistency) for continuous problems. Both
consistency notions may be abstracted to one apx consis-
tency that only requires instantiation of apx by either hull
over I or union over U, to retrieve both consistency notions.

Table 1: Computing an apx consistent CSP

Algorithm: APX-CONSISTENCY

Input: a constraint problem P = (V, D, R)
Output: an apx consistent equivalent problem
1. S ← R
2. while S 6= ∅ do

3. C ← choose an element of S

4. D′ ← Revise(C, D)
5. foreach xi s.t. D′[xi] (D[xi] do

6. S ← S ∪ {C′ | C′ ∈ R ∧ xi ∈ S[C′]}
7. D[xi]← D′[xi]
8. endfor

9. S ← S \ {C} % Revise is idempotent
10. endwhile

Definition 2 (Apx consistency). Given a constraint
C, a Cartesian product of domains D, and a variable x in
S[C], x is said to be apx consistent w.r.t. C and D[x] if and
only if D[x] = apx(Π(C, D, x)).

A constraint C is said to be apx consistent w.r.t. a Carte-
sian product of domains D if and only if every variable x in
its scope is apx consistent relative to C and D[x]. A con-
straint system is apx consistent w.r.t. D if and only if each
of its constraints is apx consistent w.r.t. D.

Solving a constraint problem P means computing all tu-
ples of the product of domains that satisfy all the con-
straints. The general algorithm is a search strategy called
backtracking. The computation state is a search tree whose
nodes are labelled by a set of domains. The backtracking
algorithm requires a time exponential in the number of vari-
ables in the worst case. Its performances can be improved
with local consistency enforcement to reduce the domains

prior to performing the search. For instance, the domain of
a variable x that is not bounds consistent relative to a con-
straint C can be reduced by the following Revise(C, D, x)
operation:

[min(D[x] ∩Π(C, D, x)), max(D[x] ∩Π(C, D, x))]

The consistency of a constraint network is obtained by a con-
straint propagation algorithm. An AC3-like algorithm [8] is
given in Table 1, where the “Revise(C, D)” operation applies
Revise(C, D, x) on each variable x in S[C] in an arbitrary
order.

As noted by Dechter [4], it may not be wise to spend
too much time in trying to remove as many inconsistent
values as possible by enforcing a “perfect local consistency”
on each constraint with Alg. APX-CONSISTENCY. It may be
indeed more efficient to defer part of the work to the search
process.

Table 2: Computing a directional apx consistent

CSP

Algorithm: DApxC

Input: – a constraint problem P = (V, D, R)
– a strict partial ordering ≺ over V
– an ordered partition Γ1, . . . , Γq of V

that is compatible with ≺
Output: a directional apx consistent equivalent problem
1. for i = q downto 1 do

2. foreach C ∈ R such that Γi ⊆ S[C] and

3. S[C] ⊆ Γ1 ∪ · · · ∪ Γi do

4. foreach x ∈ S[C]− Γi do

5. D[x]← Revise(C, D, x)
6. endfor

7. endfor

8. endfor

The amount of work performed can be reduced by adopt-
ing the notion of directional consistency [5], where inferences
are restricted according to a particular variable ordering.

Definition 3 (Directional apx consistency). Let
D be a Cartesian product of domains. A constraint system
R is directional apx consistent relative to D and a strict
partial ordering on variables if and only if for every variable
x and for every constraint C ∈ R on x such that no variable
y of its scope is smaller than x, x is apx consistent relative
to C and D[x].

A propagation algorithm for directional apx consistency,
called DApxC, is presented in Table 2. It is adapted from
Dechter’s directional consistency algorithms. We introduce
a partition Γ1, . . . , Γq of the set of variables V that is com-
patible with the given partial ordering “≺”: two different
variables x and y, such that x precedes y (x ≺ y), must
belong to two different sets Γi and Γj with i < j.

3. RELATING DAPXC AND HC4
In this section, we first present the practical aspects of en-

forcing either bounds or union consistencies; next, we show
that the revising procedure for the HC4 algorithm enforces
a directional apx consistency.

378

3.1 Revising Procedures for Apx Consistency
According to Def. 2, the enforcement of bounds and union

consistencies on a real constraint requires the ability to pro-
ject it on each of its variables and to intersect the projections
with their domains.

In the general case, the accumulation of rounding errors
and the difficulty to express one variable in terms of the
others will preclude us from computing a precise projection
of a constraint. However, such a computation may be per-
formed for constraints involving no more than one operation
(+, ×, cos, . . .), which corresponds to binary and ternary
constraints such as x× y = z, cos(x) = y, . . .

As a consequence, complex constraints have to be decom-
posed into conjunctions of binary and ternary constraints
(the primitives) prior to the solving process.

Enforcing apx consistency on a primitive is obtained by
using interval arithmetic [10]. To be more specific, the
revising procedure APXrevise(C, D) for a constraint like
C : x + y = z is implemented as follows:

8

<

:

Revise(C, D, x) : D[x]← D[x] ∩ (D[z]⊖D[y])
Revise(C, D, y) : D[y]← D[y] ∩ (D[z]⊖D[x])
Revise(C, D, z) : D[z]← D[z] ∩ (D[x]⊕D[y])

where ⊖ and ⊕ are interval extensions of the corresponding
real arithmetic operators over either I or U, depending on
the instantiation of apx desired.

Enforcing apx consistency on a constraint system is per-
formed in two steps: the original system is first decomposed
into a conjunction of primitives, adding fresh variables in the
process; the new system of primitives is then handled with
the APX-CONSISTENCY algorithm described in Table 1,
where the Revise procedure is performed by an APXrevise
algorithm for each primitive. Let HC3 (resp. UC3) be the
APX-CONSISTENCY algorithm applied to primitive con-
straints only, and where apx is instantiated with the hull
(resp. union) approximation.

3.2 HC4revise: a Revising Procedure for
Directional Apx Consistency

The HC4 algorithm was originally presented by its auth-
ors [1] as an efficient means to compute bounds consistency
on complex constraints with no variable occurring more than
once (called admissible constraints in the rest of the pa-
per). It was demonstrated to be still more efficient than
HC3 to solve constraints with variables occurring several
times, though it was not clear at the time what consistency
property is enforced on any single constraint in that case.

To answer that question, we first describe briefly below
the revising procedure HC4revise of HC4 for one constraint
C as it was originally presented, that is in terms of a two
sweeps procedure over the expression tree of C. We will
then relate this algorithm to the one presented in Table 2.

To keep the presentation short, the HC4revise algorithm
will be described by means of a simple example. The reader
is referred to the original paper [1] for an extended descrip-
tion.

Given the constraint C : 2x = z−y2, HC4revise first eval-
uates the left-hand and right-hand parts of the equation
using interval arithmetic, saving at each node the result of

the local evaluation (see Fig. 1(a)). In a second sweep from
top to bottom on the expression tree (see Fig. 1(b)), the do-
mains computed during the first bottom-up sweep are used
to project the relation at each node on the remaining vari-
ables.

=

[0 .. 16] × [0 .. 40]

2 [2 .. 2] [0 .. 8] x [0 .. 20]

[0 .. 16] − [−100 .. 16]

[0 .. 16] z [0 .. 16] [0 .. 16] ˆ [0 .. 100]

[−4 .. 4]
y

[−10 .. 10] 2
2

(a) Forward sweep

=

[0 .. 16] × [0 .. 40]

2 [2 .. 2] [0 .. 8] x [0 .. 20]

[0 .. 16] − [−100 .. 16]

[0 .. 16] z [0 .. 16] [0 .. 16] ˆ [0 .. 100]

[−4 .. 4]
y

[−10 .. 10] 2
2

(b) Backward sweep

Figure 1: HC4revise on the constraint 2x = z − y2

Given the constraint set ∆C = {2x = α1, y
2 = α2, z −

α2 = α3, α1 = α3} obtained by decomposing C into prim-
itives, it is straightforward to show that HC4revise simply
applies all the Revise procedures in ∆C in a specific order—
induced by the expression tree of C—noted ωC .

To be more specific, HC4revise first applies the Revise
procedure for the right-hand variable of all the primitives
up to the root, and then the Revise procedures for the left-
hand variables:

1. Revise(2x = α1, D, α1)
2. Revise(y2 = α2, D, α2)
3. Revise(z − α2 = α3, D, α3)
4. Revise(α1 = α3, D, α3)
5. Revise(α1 = α3, D, α1)
6. Revise(2x = α1, D, x)
7. Revise(z − α2 = α3, D, z)
8. Revise(z − α2 = α3, D, α2)
9. Revise(y2 = α2, D, y)

Note that, so doing, the domain of each fresh variable intro-
duced by the decomposition process is set to a useful value
before being used in the computation of the domain of any
other variable.

For admissible constraints, the HC4revise algorithm can
be implemented using the DApxC algorithm by considering
two well-chosen partitions of the set of variables of the de-
composed problem. Non-admissible constraints need being
made admissible by adding new variables to replace multi-
ple occurrences. The partitioning scheme is given by tree
traversals as follows: The first partition Γ is obtained by a
right-to-left preorder traversal of the tree where visiting a
node has the side effect of computing the set of variables

379

associated with its children. The underlying strict partial
ordering of the variables is such that a child is greater than
its parent. The second partition Γ′ is obtained by inverting
the partition computed by a left-to-right preorder traversal
of the tree where the visit of a root node associated with a
variable x just computes the set {x}. The underlying strict
partial ordering is such that a child is smaller than its par-
ent. HC4revise is equivalent to applying DApxC on Γ and
then on Γ′.

Going back to our example, let us consider the CSP P =
(V, D, ∆C), with V = {x, y, z, α1, α2, α3}, D = D[x]×D[y]×
D[z] × D[α1] × D[α2] × D[α3], and ∆C defined as above.
Let us also consider a dummy fresh variable α0 supposed
to be in the scope of the constraint represented by the root
node and its children (α1 = α3), which is only introduced
to initialize the computation of projections1. The partitions
used to apply HC4revise on P by using Alg. DApxC are then
as follows:



Γ = {α0}, {α1, α3}, {z, α2}, {y}, {x}
Γ′ = {y}, {α2}, {z}, {α3}, {x}, {α1}, {α0}

Let γC (resp. γ′

C) be the partial ordering induced by Γ (resp.
Γ′) on the variables. With its two sweeps on a tree-shaped
constraint network, HC4revise is very similar to Dechter’s
ADAPTIVE-TREE-CONSISTENCY algorithm [4, p. 265].
More importantly, the constraint network processed by Alg.
DApxC being a tree, we can state a result analogous to the
one stated by Freuder [6] for arc consistency:

Proposition 1. Given a constraint C and a Cartesian
product of domains D for the variables in S[C], let ∆C be
the set of primitives obtained by decomposing C. We have:

1. ∆C is directional bounds consistent w.r.t. γ′

C and D′′ =
HC4revise(C, D) for D ∈ I

n;

2. if C is an admissible constraint, the constraint sys-
tem represented by ∆C is union consistent w.r.t. D′′ =
HC4revise(C, D) for D ∈ U

n.

Proof. Let Γ and Γ′ be two partitions for the variables
in V =

S

C′∈∆C
S[C′] defined as described above. As stated

previously, we have HC4revise(C, D) = DApxC(〈V, D′, ∆C〉,
γ′

C , Γ′), where D′ = DApxC(〈V, D, ∆C〉, γC , Γ).
The first point follows directly from this identity. To prove

the second point, let us consider the set ΠC of projection
operators implementing the Revise procedures for the prim-
itives in ∆C . The UC3 algorithm applied on ∆C and D
would compute the greatest common fixed-point ⊤ included
in D of these operators, which is unique since they all are
monotonous [2]. By design of UC3, ∆C is union consistent
w.r.t. ⊤.

Consider now HC4revise called on C and D, which applies
each of the operators in ΠC once in the order ωC :

• either it computes a fixed-point of ΠC , which must be
the greatest fixed-point ⊤, by unicity of the gfp and by
contractance of the operators in ΠC ,

• or, it is possible to narrow further the domains of the
variables by applying one of the operators in ΠC . Let
π1 : β1 ← f1(β1, . . . , βk) be this operator. Consider the

1Alternatively, the constraint α1 = α3 could be replaced by
the equivalent one α1 − α3 = α0, with α0 constrained to be
equal to 0.

case where π1 is an operator applied during the bottom-
up sweep (the case where it is an operator applied dur-
ing the top-down sweep may be handled in the same

way): Let D
(0)
1 , . . . , D

(0)
k be the domains of β1, . . . , βk

just before applying π1 for the first time; let D
(1)
1 =

f1(D
(0)
1 , D

(0)
2 , . . . , D

(0)
k); let D

(2)
1 ⊆ D

(1)
1 be the new do-

main computed for β1 during the top-down sweep, and

D
(1)
i = fi(D

(2)
1 , D

(0)
2 , . . . , D

(0)
k) for i ∈ {2, . . . , k} the

domains for β2, . . . , βk obtained by back-propagation of

D
(2)
1 . Let us show that D

(3)
1 = f1(D

(2)
1 , D

(1)
2 , . . . , D

(1)
k)

is equal to D
(2)
1 , which will contradict the hypothesis

that we have not reached a fixed-point: by definition

of the UC3revise fi operators used, we have: D
(1)
1 =

{b1 ∈ D
(0)
1 | ∃a1 ∈ D

(0)
1 . . . ∃ak ∈ D

(0)
k : c(a1, . . . , ak) ∧

b1 ∈ hull({a1})}, D
(1)
i = {bi ∈ D

(0)
i | ∃a1 ∈ D

(2)
1 ∃a2 ∈

D
(0)
2 . . . ∃ak ∈ D

(0)
k : c(a1, . . . , ak) ∧ bi ∈ hull({ai})}

for i ∈ {2, . . . , k}, and D
(3)
1 = {b1 ∈ D

(2)
1 | ∃a1 ∈

D
(2)
1 ∃a2 ∈ D

(1)
2 . . . ∃ak ∈ D

(1)
k : c(a1, . . . , ak) ∧ b1 ∈

hull({a1})}. Thus, for any b1 ∈ D
(2)
1 , we have ∃a1 ∈

D
(2)
1 ∃a2 ∈ D

(0)
2 . . . ∃ak ∈ D

(0)
k : c(a1, . . . , ak) ∧ bi ∈

hull({ai}) since D
(2)
1 ⊆ D

(1)
1 and the domains of β2, . . . ,

βk have not changed between the bottom-up and the
top-down sweeps, the constraint being admissible (with

a tree representation). However, by definition of D
(1)
2 ,

. . . , D
(1)
k , we have a2 ∈ D

(1)
2 , . . . , ak ∈ D

(1)
k since a2 ∈

hull({a2}), . . . , ak ∈ hull({ak}). Consequently, b1 ∈

D
(3)
1 , and then D

(2)
1 ⊆ D

(3)
1 . Since D

(3)
1 ⊆ D

(2)
1 by

contractance of the operators, we conclude that D
(2)
1 =

D
(3)
1 .

Note. Contrary to Benhamou et al. statement [1], the HC4-
revise algorithm does not enforce hull consistency on an ad-
missible constraint as the following example shows: take
c : 1/x = y with x ∈ [−1, 1] and y ∈ [0, +∞]. Applying
HC4revise on c leads to x ∈ [0, 1], and y ∈ [0, +∞], which
are clearly not hull consistent domains (y should be nar-
rowed down to [1, +∞]).

4. ASSESSING THE IMPACT OF
CONSTRAINT DECOMPOSITION

We present the results of both HC4 and HC3 on four stan-
dard benchmarks from the interval constraint community.
They were chosen so as to be scalable at will and to ex-
hibit various behaviors of the algorithms. As a side note,
it is important to remember that these algorithms are of-
ten outperformed by other algorithms. Their study is still
pertinent, however, since they serve as basic procedures in
these more efficient algorithms.

It is important to note also that, originally, none of these
problems is admissible. In order to show the impact of ad-
missibility, we have factorized the constraints of one of them.

All the problems have been solved on an AMD Athlon 900
MHz under Linux, using a C++ interval constraint library
written for our tests based on the gaol2 interval arithmetic
library. In order to avoid any interference, no optimization
(e.g., improvement factor) was used.

2Interval C++ library available at http://sf.net/
projects/gaol/

380

bratu: time vs. # variables

10 12 14 16 18 20 22 24 26 28 30

0

200

400

600

800

HC3
HC3sb
HC4
HC4sb

broyden−banded: time vs. # variables

4 5 6 7 8

0

100

200

300

400

500

HC3
HC3sb
HC4
HC4sb

moré−cosnard: time vs. # variables

20 30 40 50 60 70 80

0

500

1000

1500
HC3
HC3sb
HC4
HC4sb

feigenbaum: time vs. # variables

4 5 6 7 8 9 10 11 12

0

1000

2000

3000

4000

HC3
HC3sb
HC4
HC4sb

Figure 2: Solving times in seconds

For each benchmark, four different methods have been
used:

• HC3, which enforces bounds consistency on the de-
composed system: the propagation algorithm is APX-
CONSISTENCY and the Revise method is implemen-
ted with HC3revise;

• HC3sb, which uses S-boxes [7], that is, each user con-
straint C is decomposed into a separate set of primi-
tives and gives rise to a Revise procedure RBC that en-
forces bounds consistency on this set by using HC3revi-
se procedures for each primitive, and propagating the
modifications with Alg. APX-CONSISTENCY. All the
RBC methods for the constraints in the user system
are then handled themselves with Alg. APX-CONSIS-
TENCY. This propagation scheme forces consistency
to be enforced locally for each user constraint before
reconsidering the others;

• HC4, which enforces directional bounds consistency on
each user constraint using HC4revise, and which uses
Alg. APX-CONSISTENCY for the propagation over
the constraints in the system;

• HC4sb, which uses one S-box per user constraint. As
a consequence, HC4revise is called as many times as
necessary to reach a fixed-point for any non-admissible
constraint before considering other constraints.

Each graphics provided (see Fig. 2) displays the compu-
tation time in seconds required to find all solutions up to an
accuracy of 10−8 (difference between the lower and upper
bounds of the intervals) for each method.

The bratu constraint system modelizes a problem in com-
bustion theory. It is a square, sparse and quasi-linear system
of n + 2 equations (with i, k ∈ {1, . . . , n}):



∀k : xk−1 − 2xk + xk+1 + exp(xk)/(n + 1)2 = 0,
x0 = xn+1 = 0, ∀i : xi ∈ [−108, 108]

The largest number of nodes per constraint is independent
of the size of the problem and is equal to 12 in our imple-
mentation.

As already reported by Benhamou et al. [1], HC4 appears
more efficient than HC3 to solve all instances of the prob-
lem, and its advantage grows with their size. Localizing
the propagation does not seem a good strategy here, since
HC3sb and HC4sb both perform poorly in terms of the num-
ber of projections computed3. Interestingly enough, HC4sb
is faster than HC3 while it requires more projections. The
first reason for this discrepancy that comes to mind is that
the “anarchic” propagation in HC3 has a cost much higher
in terms of management of the set of constraints to reinvoke
than the controlled propagation achieved with HC4sb (see
below for another analysis).

The broyden-banded problem is very difficult to solve
with HC3, so that we could only consider small instances
of it (with k ∈ {1, . . . , n}):

∀k : xk(2 + 5x2
k) + 1−

P

j∈Jk
xj(1 + xj) = 0

Jk = {j | j 6= k ∧max(1, i− 5) 6 j 6 min(n, i + 1)},
xk ∈ [−108, +108]

Contrary to bratu, the number of nodes in the constraints
is not independent of the size of the problem. It follows
however a simple pattern and it is bounded from below by
16 and from above by 46.

As with bratu, the efficiency of HC4 compared to HC3 is
striking, even on the small number of instances considered.
Note that, here, HC3sb is better than HC3. On the other
hand, HC4 is still better than HC4sb.

The moré-cosnard problem is a nonlinear system obtained
from the discretization of a nonlinear integral equation (with
k ∈ {1, . . . , n}):

∀k :

8

<

:

xk ∈ [−108, 0],

xk + 1
2
[(1− tk)

Pk

j=1 tj(xj + tj + 1)3

+ tk

Pn

j=k+1(1− tj)(xj + tj + 1)2] = 0

The largest number of nodes per constraint grows linearly
with the number of variables in the problem.

HC4 allows to solve this problem up to 1000 times faster
than HC3 on the instances we tested. An original aspect of
this benchmark is that localizing the propagation by using
S-boxes seems a good strategy: HC3sb solves all instances
almost as fast as HC4 (see the analysis in the next section).
Note that, once again, though the number of projections
required for HC3sb is almost equal to the one for HC4, there
is still a sizable difference in solving time, which again might
be explained by higher propagation costs in HC3sb.

Lastly, the Feigenbaum problem is a quadratic system:
8

<

:

∀k ∈ {1, . . . , n} : xk ∈ [0, 100],
∀k ∈ {1, . . . , n− 1} : − 3.84x2

k + 3.84xk − xk+1 = 0,
−3.84x2

n + 3.84xn − x1 = 0

The largest number of nodes per constraint is independent
of the size of the problem. It is equal to 10 in our imple-
mentation.

3Due to lack of space, all graphics corresponding to the num-
ber of projections have been omitted.

381

The advantage of HC4 over HC3 is not so striking on this
problem. HC4sb and HC3sb do not fare well either, at least
if we consider the computation time.

Parenthetically, the equations in the feigenbaum problem
can easily be factorized so that the resulting problem is only
composed of admissible constraints. Due to lack of space,
the corresponding graphics is not presented here; however,
we note that the solving time is reduced by a factor of more
than 500 compared to the original version.

5. DISCUSSION
To sum up what has been observed in Section 4, it appears

that it is more efficient to deal locally with the modification
of a domain induced by some primitive by first reinvoking
the other primitives coming from the decomposition of the
same user constraint in problems with large constraints like
moré-cosnard, while the opposite is true with systems of
small constraints (even for systems with many constraints)
such as feigenbaum or bratu. An intuitive understanding
of that is that the information just obtained by a reduction
is spread and lost in a large network of primitives while it
could be efficiently used locally to compute projections on a
user constraint.

Figure 3 relates the ratios—normalized so that they all lie
in the range 0.0–1.0—of the number of projections required
by HC3 and HC4, and by HC3sb and HC4sb to the number
of nodes in a constraint. As one may see, the ratio is roughly
constant for HC3 and HC4 when the number of nodes is
independent of the size of the problem, while it increases
sharply when the number of nodes increases with the size
of the problem (e.g., moré-cosnard). On the other hand,
the ratio between HC3sb and HC4sb stays constant for all
problems, a fact particularly striking with moré-cosnard.
This is a solid evidence that localization of the information
as obtained from using HC4 (or, to a lesser extent, HC3sb),
is a winning strategy the larger the constraints in a problem
are.

The explanation for the loss of performances induced by
the decomposition of user constraints is then twofold: for
large systems made of small constraints, it is mainly due to
the multiplication of constraints to consider, as it was con-
jectured by previous authors; for large systems with large
constraints, an additional cause is the immediate spread-
ing of information gained from one user constraint c to the
primitives stemming from other user constraints, where it is
not relevant, while deferring the reconsideration of more in-
teresting primitive constraints stemming from c (irrelevant-
spreading effect).

It is interesting to observe that HC4 is always more effi-
cient than HC4sb on all the benchmarks considered. This is
consistent with facts long known by numerical analysts: we
show in a paper to come that HC4 may be considered as a
free-steering nonlinear Gauss-Seidel procedure where the in-
ner iteration is obtained as in the linear case. For this class
of methods, it has been proved experimentally in the past
that it is counterproductive to try to reach some fixed-point
in the inner iteration.

For the interested reader, all the data used to prepare the
figures in Section 4 and many more are available in tabu-
lated text format at http://www.sciences.univ-nantes.

10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bratu

Number of variables

HC3/HC4
HC3sb/HC4sb
Nodes

4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Broyden−banded

Number of variables

HC3/HC4
HC3sb/HC4sb
Nodes

4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Feigenbaum

Number of variables

HC3/HC4
HC3sb/HC4sb
Nodes

20 30 40 50 60 70 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Moré−Cosnard

Number of variables

HC3/HC4
HC3sb/HC4sb
Nodes

Figure 3: Impact of the number of nodes per con-

straint on the number of projections

fr/info/perso/permanents/goualard/dbc-data/.

Acknowledgements
The contribution of an anonymous reviewer in spotting a
flaw in Prop. 1 as stated in an earlier version of this paper
is gratefully acknowledged.

6. REFERENCES
[1] F. Benhamou, F. Goualard, L. Granvilliers, and J.-F.

Puget. Revising Hull and Box Consistency. In Procs.
of ICLP ’99, pages 230–244. The MIT Press, 1999.

[2] F. Benhamou and W. Older. Applying interval
arithmetic to real, integer and boolean constraints.
JLP, 32(1):1–24, 1997.

[3] E. Davis. Constraint propagation with interval labels.
A.I., 32:281–331, 1987.

[4] R. Dechter. Constraint Processing. Morgan Kaufmann,
1st edition, 2003.

[5] R. Dechter and J. Pearl. Network-based heuristics for
constraint satisfaction problems. A.I., 34:1–38, 1987.

[6] E. Freuder. A sufficient condition for backtrack-free
search. J. ACM, 29(1):24–32, 1982.

[7] F. Goualard and F. Benhamou. A visualization tool
for constraint program debugging. In Procs. of ASE
’99, pages 110–117. IEEE Computer Society, 1999.

[8] A. Mackworth. Consistency in networks of relations.
A.I., 1(8):99–118, 1977.

[9] U. Montanari. Networks of constraints: Fundamental
properties and applications to picture processing.
Information Science, 7(2):95–132, 1974.

[10] R. Moore. Interval Analysis. Prentice-Hall, 1966.

[11] D. Waltz. Understanding line drawings of scenes with
shadows. In The Psychology of Computer Vision,
chapter 2, pages 19–91. McGraw-Hill, 1975.

382

